
A GF-Grammar for Ancient Greek
Work in slow progress

Hans Leiß
Universität München

Centrum für Informations- und Sprachverarbeitung

3rd GF Summer School
Frauenchiemsee, August 18–30, 2013

1 / 44

Why this?

I Apply GF to an extremely well-studied language, in detail

I Get a feeling for the linguistic knowledge of the 19th century

I Learn more about Ancient Greek (and Aristotle’s view of it)

I Learn how to use GF, know its pitfalls, improve teaching it

I Use GF grammar implementation as a grammar book checker.

Possible “application”: connect it with efforts to reconstruct

I Aristotle’s syllogism

I Euclid’s reasoning (J.Avigard)

and check the Greek argumentation by a theorem prover.

2 / 44

Content

I Transliteration
I Phonological rules

I Sound laws

I Accents and Aspirates
I Accent rules

I Nominal Morphology

I Verbal Morphology
I NP-Syntax

I Basic NP-rules
I Numerals

I VP-Syntax
I VP-constructions

3 / 44

Writing system

1. We use the transliteration of greek symbols

�, �, �, �, �, �, . . .

by latin symbol combinations

a), a(, a)‘, a(‘, a(’, a)’, . . .

using gf/src/compiler/GF/Text/Transliterations.hs.

Vowels can have diacritics for: iota sub/ad-scriptum, 2
aspirates, 3 accents (and 2 indicators of vowel length).

“Alphabet” size including vowel length indications: 224

2. The GF transliteration differs from ‘the standard’ one (where
j = th, u=u) or the one in LaTeX (where j = j).

We do exploit the GF transliteration in string patterns.

So far, we don’t use capitalized letters in the string patterns.

4 / 44

3. We use transliterated string input and output:

Lang> p -cat=N "a)’nvrwpos*" | l -table

s Sg Nom : a)’nvrwpos*

...

s Dl Voc : a)nvrw’pw

4. and apply -from/to ancientgreek for greek symbols:

Lang> ps -from ancientgreek "�njr¸pú" | p -cat=CN

UseN anthropos N

Lang> p -cat=NP "o(a)’nvrwpos*" | l -table

-to ancientgreek

s Nom : å �njrwpoc

s Acc : tän �njrwpon

...

5 / 44

Word structure

As in all languages, words are not arbitrary sound combinations.
As in some other languages, intonation at the word level is
indicated in the script.

I “Sound laws” restrict the sound (resp.char) combinations.

I “Accentuation rules” restrict the intonation.

Problem: we have to deal with both when building the paradigms.

I Sound laws involve vowel changes, and
vowel length influences accentuation;

I Conversely, accentuation is involved in sound laws as well.

6 / 44

Minor problem:

I Vowel length indicators are not part of the official script.

I Some combinations of length indicator and accent are not
represented in Unicode (a ’, a.’).

We might use vowel length indicators to produce the paradigms
and then drop the length indicators before rendering greek strings.

But: lexica show vowel lengths only rarely (when exactly?).

7 / 44

Sound laws

As a restriction on sound combinations, as sound law is just a
constraint. But we use sound laws as functions

soundlaw : Type = Str*Str -> Str*Str

to ensure that these constraints don’t get vioalated when
composing word forms.

I the input type is Str*Str, since we apply a sound law at a
specific point in a string, typically given as <stem,ending>,

I the output type is Str*Str, since sound laws are composed.

8 / 44

〈Sound laws as string operations〉≡
oper soundlaw = (Str*Str) -> (Str*Str) ;

-- c@(guttural or labial) + si > - + (c*s)i,

gutlabS : soundlaw =

\se -> case se of { -- BR 41 6.

<x + c@#guttural, "si" + y> => <x, "xi" + y> ;

<x + c@#labial, "si" + y> => <x, "qi" + y> ;

=> se } ;

contractVowels : soundlaw = \se ->

case se of { <x + "a", "ai" + y> => <x, "ai" + y> ;

... (22 cases) ... -- BR 15 d)

- => se } ;

-- involved accent is put on the contraction, but

-- may be changed by applying an accent rule later

9 / 44

Accentuation

I Every Greek word has an accent, acute (tìn), gravis (tän), or
circumflex (tw̃n) – except for

I a few proclitics å, �, oÉ, aÉ, ân, âx, eÊc, eÊ, ±c, oÎ
I a number of enclitics (Prons mou, tic, Advs pou, Part ge, ...)
I at the sentence end, a proclitic keeps its accent: pw̃c g�r oÖ;
I at sentence beginning, enclitics keep the accent: fhmÈ toÐnun ..

I The gravis replaces the acute on the last syllable of a word
that is followed by another word: tän �njrwpon

I except for interrogatives: tÐc �njrwpoc;

But: An (accentuated or proclitic) word may –according to specific
rules– inherit an acute(!) on its last syllable from a following
enclitic: �njrwpìc tic, eÒ tic

We assume a special lexer/unlexer replaces the gravis by an acute
and moves the inherited accents to the enclitics which lost them.

Problem: Write such a lexer/unlexer!
10 / 44

General accent rules

1. The acute can be on a short or long vowel and diphtong, but
only on one of the final three syllables. If the last syllable is
long, it can only be on one of the final two syllables.

2. The circumflex can be on long vowels and diphtongs, and on
one of the final two syllables. If the last syllable is long, it can
only be on the final one.

3. If the last syllable is short and the second last is long and
emphasized, the second last must carry a circumflex.

Since inflection may add/replace short or long endings, the accent
moves in the paradigm. (Some diphtongs (ai, oi) count as short.)

11 / 44

Admissible accentuations in greek words, when the accent is on

3rd last vowel 2nd last vowel last vowel

A N N N A N N N A

L|S L|S S L|S S L|S L|S L|S L|S

L|S L L

N C N N N C

L|S L S L|S L|S L

Accent kinds: A=Acute, C=Circumflex, N=NoAccent
Vowel lengths: L=Long, S=Short

Example:

German: Aristóteles E N N + L S S
Greek: >Aristotèlhc N A N + S S L

12 / 44

Noun inflection

There are three major declension classes:

1. I (A-declension)

2. II (O-declension)

3. III (3rd declension)

Since vowels may change, accents are better treated independently.

Accent rule for noun declension:

1. the accent position (of SgNom) is only changed on demand.

2. a shift is demanded if a an ending with a long vowel is added
and the accent was on the 3rd last vowel.
�njrwpoc/�njr¸pwn

3. when adding an ending with accent, drop the stem’s accent.

13 / 44

We can produce the paradigm of a word

Alternative 1 from several forms that show the different accents
and accent positions.

Alternative 2 from information about lengths of syllables/vowels in
the stem and the endings.

We started with alternative 1 for noun declensions I and II (-A,-O),
but moved to alternative 2 for declension III.

Alternative 1 seems hopeless for verb inflection (ca. 500 forms)

I too many different stems per word (with 7 aspect stems).

I too many changes in the stems (vowel lengths, consonant
dropping)

14 / 44

Noun declension I, II

For nouns ending in a or h (without accent), infer vowel changes
and accent shifts from SgNom,SgGen,PlNom:

〈A-declension, 1〉≡
noun3A : Str -> Str -> Str -> Noun =

\valatta, valatths, valattai ->

let valatt = P.tk 1 valatta ;

valatth = P.tk 2 valatths ; -- omit "s*"

valattPl = P.tk 3 valatths ; -- omit "hs*"|"as*"

in

mkNoun

valatta valatths (valatth+"|") (valatta+"n") valatta

valattai (dropAccent valatt +"w~n") (valattPl+"ais*")

(valattPl+"as*")

(valattPl+"a") (valattPl+"ain") Fem ; -- +"a”

PlNom is needed to see if short endings like ai cause an accent
change on vowels �, Ð, Ô (i.e. if these are long).

15 / 44

For those nouns ending in �/ , SgGen, SgDat, PlDat take ã/h̃:

〈A-declension, 2〉≡
nounA’ : Str -> Noun = \tima’ -> -- accent on endvowel

let tim = Predef.tk 2 tima’ ;

a = Predef.tk 1 (Predef.dp 2 tima’)

in

mkNoun

tima’ (tim+a+"~s*") (tim+a+"|~") (tim+a+"’n") tima’

(tim+"ai’") (tim+"w~n") (tim+"ai~s*") (tim+"a’s*")

(tim+"a’") (tim+"ai~n") Fem ;

Similar declension functions can be written this way and combined
to a “smart paradigm” for declensions I/II. But:

I Regularities on accentuation are not explicitly expressed.

I Phonological regularities (sound laws) are likely to be violated.

16 / 44

Noun declension III

For nouns whose stem ends in a consonant or i, u, or diphthong

I the stem is found by stripping off ending -oc from SgGen

I use special endings with adaptions to the stem due to
phonological rules (stem + c + ending, vowel changes)

I for monosyllabic stems, shift accent to the ending in Gen/Dat

To build the paradigms, we transform given forms (of type Str) to
structured data (of type Word) and compute with these in order to

I need less pattern matching to find parts of strings,

I reuse information extracted from the given strings.

Basically: isolate the three final vowels and non-vowel parts around.

17 / 44

〈Word patterns: c1+v1+c2+v2+c3+v3+c4〉≡
oper

Position : PType = Predef.Ints 3 ;

param

Accent = Acute Position

| Circum Position | NoAccent ;

Syllability = Mono | Bi | Multi ;

Length = Zero | Short | Long ;

oper

Word = { s : Syllability ; -- # end syllables

v : Str * Str * Str ; -- end vowels

l : Length * Length * Length ; -- |vowels|

c : Str * Str * Str * Str ; -- consonants

a : Accent

} ;

toWord : Str -> Word = ...

18 / 44

〈Example: word >Aristotèlhc as Word〉≡
Lang> cc -unqual toWord "A)ristote’lhs*"

{s : Syllability = Multi;

a : Accent = Acute 2;

c : {p1 : Str; p2 : Str; p3 : Str; p4 : Str}

= {p1 = "A)rist"; p2 = "t"; p3 = "l"; p4 = "s*"};

l : {p1 : Length; p2 : Length; p3 : Length}

= {p1 = Short; p2 = Short; p3 = Long};

v : {p1 : Str; p2 : Str; p3 : Str}

= {p1 = "o"; p2 = "e"; p3 = "h"}}

Lang> cc toStrT (toWord "A)ristote’lhs*")

"A)rist-o-t-e’-l-h-s*"

〈Auxiliary conversions from Words to strings〉≡
toStrT: Word -> Str = .. -- show segmentation

toStr0: Word -> Str = .. -- ignore accent rules

19 / 44

To enforce accent rules, we may have to change the accent type or
position where we want to put it, depending on lengths of vowels.

〈Adding an accent to a Word〉≡
addAccentW : Accent -> Word -> Str = \accent, w ->

let v1 = w.v.p1 ; -- third last vowel

... l3 = w.l.p3 ; -- length of last vowel

in case accent of {

Acute 3 => merge w.c <v1, v2, v3 + "’"> ;

Circum 3 => case l3 of {

Long => merge w.c <v1, v2, v3 + "~"> ;

=> merge w.c <v1, v2, v3 + "’"> } ;

...

=> Predef.error ("Illegal accentuation")

} ;

〈Enforcing accent rules for the stored accent〉≡
toStr : Word -> Str = \w -> addAccentW w.a w ;

20 / 44

It’s more expensive to do this with Str instead of Word:

〈Adding an accent to a string〉≡
addAccent : Accent -> Str -> Str = ...

For example, this covers accent rule 3 above:

〈Adding an accent to a string〉+≡
Lang> cc -unqual addAccent (Acute 2) "a)’nvrwpwn"

"a)nvrw’pwn"

Lang> cc -unqual addAccent (Acute 2) "a)’nvrwpos*"

"a)nvrw~pos*" -- (not greek)

The accent to be added may be computed, not explicitly given.

21 / 44

To build paradigms based on structured data Word*Ending, we use

〈Type of noun endings〉≡
NEnding = { a : Accent ;

v : Str ; l : Length ; -- vowel with length

c : Str * Str } ; -- surrounding consonants

toNEnding : Str -> NEnding = \str -> ...

〈Building a word form from w:Word and e:Str〉≡
toStrN : Word -> Str -> Str =

\w,e -> toStr (concat <w, toNEnding e>) ;

concat : (Word * NEnding) -> Word = ... ;

-- Append an ending of constants to the stem’s end c’s.

-- If the ending has an accent, drop the one in the stem;

-- if it has an unaccentuated vowel, use the stem’s

-- accent. Combine the s,v,l,c components modulo the

-- length of the ending’s vowel.

22 / 44

Lift the string-level soundlaw to operations on Words:

〈Sound laws on structured words〉≡
Soundlaw = (Word * NEnding) -> (Word * NEnding) ;

toSL : soundlaw -> Soundlaw = \sl -> \we ->

-- toStr0 to not apply accent rules:

-- sw’mat+si > sw’ma+si, not sw~mat+si > ...

let se = sl <toStr0 we.p1, toStr we.p2>

in adjustAccent <toWord se.p1, toNEnding se.p2> ;

adjustAccent : Soundlaw = \<W,E> -> ..

-- move and change accent in W, if needed when adding E

-- according to accent rules for W+E (does not change E).

〈Example 〉+≡
Lang> cc toStrT (adjustAccent <toWord "ge’ne",

toNEnding "wn">).p1

"--g-e-n-e’-"

23 / 44

〈Example 〉+≡
gutlabS : soundlaw = .. ; -- guttural+s > 0+x,

-- labial+s > 0+q

glS : Soundlaw = toSL gutlabS ;

A sound law ought to adjust accent and syllability in the stem, if a
vowel is added/dropped/changed in length in an ending, so that
soundlaws can be combined. We want to have:

I (soundlaws o adjustAccent) : Soundlaw,

I (adjustAccent o soundlaws) : Soundlaw.

〈Example: compute accent position, then drop s and contract vowels〉≡
toStrNs : Word -> Str -> Str =

\w,e -> let we = adjustAccent <w, toNEnding e> ;

we’ = cVdS we ;

in toStr (concat we’) ;

cVdS ue = case (toStr ue.p2) of {

#vowel + => cV (dS ue) ; => ue } ;

24 / 44

A Paradigm is constructed in three steps:

1. turn the given forms (and stem) into Words,

〈Step 1〉≡
noun3LGL : Str -> Str -> Gender -> Noun =

\rhtwr, rhtoros, g ->

let -- stem ends in l|r, k|g|c, p|b|f

stem : Str = case rhtoros of {

stm + ("os*"|"o’s*") => stm ; => rhtwr } ;

rhtwr : Word = toWord rhtwr ;

-- Ablaut: undo vowel lengthening in SgNom

rhtor : Word = let stem’ = toWord stem in ...

in noun3LGLw rhtwr rhtor g ;

25 / 44

2. construct the combined Word using the isolated informations,
applying soundlaws if necessary,

3. collapse the combined Word to a string (using accent rules).

〈Steps 2 and 3〉≡
noun3LGLw : Word -> Word -> Gender -> Noun =

\rhtwr,rhtor,g ->

let syl = rhtwr.s ;

rhtwr = toStrN rhtwr "" ;

rhtoros = toStrN rhtor (endingsN3!Sg!Gen!g!syl) ;

rhtorsi = toStrNsl glS -- BR 43, BR 41 6.

rhtor (endingsN3!Pl!Dat!g!syl) ;

...

in mkNoun rhtwr rhtoros ... rhtoroin g ;

Sound law glS is applied before combining the parts, using

toStrNsl : Soundlaw -> Word -> Str -> Str =

\sl,w,e -> toStr (concat (sl <w, toNEnding e>)) ;

26 / 44

Verb inflection

There are two main conjugation classes:

I w-conjugation: paideÔw

I mi-conjugation: deÐknumi

There are three diatheses, active, medium, passive. The verbal
system is organized by aspect (not by tense), with seven stems:

Stem w- mi- conjugation form:

act/med/pass Pres paideyw didwmi VAct (VPres VInd) Sg P1
act/med Fut paideysw dwsw VAct VFutInd Sg P1
act/med Aor epaideysa edwka VAct (VAor VInd) Sg P1

act Perf pepaideyka dedwka VAct (VPerf VInd) Sg P1
med/pass Perf pepaideymai dedwmai VMed (VPerf VInd) Sg P1

pass Aor epaideythn edothn VPass (VAor VInd) Sg P1
VAdj paideytos dotos VAdj Masc Sg Nom

27 / 44

Parametrization of the verb forms:

I Full verbs have three voices (medium: ' reflexive use).

I Greek has two kinds of deponent verbs lacking active forms.

I There are four ”main” tenses, which except GFut correspond
to the three aspects: imperfective, perfective and stative.

〈Verb form parametrization〉≡
param

Voice = Act | Med | Pass ; -- Active, Medium, Passiv

VType = VFull | DepMed | DepPass ; -- used in predV

VTmp = GPres | GFut | GAor | GPerf ; -- main tenses

-- VAspect = Imperfective (Present-stem)

-- | Perfective (Aorist-stem)

-- | Stative (Perfect-stem)

-- ;

28 / 44

〈Finite verb forms〉≡
-- ’main’ tenses Pres,Fut,Aor,Perf have moods:

VTense = VPres Mood -- (in the order of verbstems)

| VImpf -- imperfect: just Ind mood

| VFut MoodF -- future: just Ind and Opt mood

| VAor Mood

| VPerf Mood

| VPlqm ; -- plusquamperfect: just Ind

Mood = VInd | VConj | VOpt; -- | VImp

MoodF = FInd | FOpt ; -- Conj, Imp don’t exist in Fut

Imperatives exist in all voices but only three of the main tenses and
of course not all (Pers,Num)-combinations (Dual?)

〈Tense and person for imperatives:〉≡
ITmp = IPres | IAor | IPerf ;

NumPers = SgP2 | SgP3 | PlP2 | PlP3 ;

There are no imperative forms in Active IPerf: deliver NonExists.

29 / 44

The main tenses have infinite Forms: infinitives and participles.
And there are two verbal adjectives (modalized passive participles).

〈Finite and infinite verb forms〉≡
param -- Voice: omitted here, cf. Verb

Vform = Fin VTense Number Person

| Imp ITmp NumPers

| Inf VTmp

| Part VTmp AForm ;

oper -- type of morphological verb

Verb : Type = {

act : Vform => Str ; -- Voices:

med : Vform => Str ; -- define med, derive pass

pass : Vform => Str ;

vadj1 : Adj ; -- paideyto’s = who can be educated

vadj2 : Adj ; -- paideyte’os = who must be educated

vtype : VType

-- stems : Str * ... * Str might be useful to have

} ;

30 / 44

One might want to omit participles and verbal adjectives from the
morphological verb and make them morphological adjectives, using

〈Constructors for participles〉≡
mkAdj : Verb -> Voice -> VTmp -> Adj ;

that have to find the proper verb stem from the VTmp, and

〈Constructors for verbal adjectives〉≡
vadj1, vadj2 : Verb -> Adj ;

These could perhaps take the verbstem:Str instead of v:Verb.

〈Number of verb forms〉≡
3 * |Vform| + 2 * |AForm|

= 3 * (|VTense|*|Number|*|Person|

+ |ITmp|*|NumPers| + |VTmp|)

+ (3 * |VTMP| + 2) * |AForm| -- particples + vadjs

= 3 * (13*3*3 + 3*4 + 4) + (3*4 + 2)*(3*3*5)

= 399 + 630 =~ 1030

Creating all forms for give V3 = dÐdwmi takes 3 sec.
31 / 44

Noun phrases
Positions of the adjectival attribute:

meg�lh pìlic A N a big city
pìlic meg�lh N A
� meg�lh pìlic DefArt A N the big city
� pìlic � meg�lh DefArt N DefArt A

But: predicatively used adjective: (Sentence)
meg�lh � pìlic A DefArt N (Cop) the city is big
� pìlic meg�lh DefArt N A (Cop)

Positions of the genitive attribute:

� tw̃n Pèrswn �rq DefArt NPgen N2 the reign of the Persians
� �rq� tw̃n Pèrswn DefArt N2 NPgen

tw̃n Pèrswn � �rq NPgen DefArt N2

Positions of demonstrative pronoun:

âkẽinh � gun DemPron DefArt N that woman
� gun� âkẽinh DefArt N DemPron

32 / 44

Some word order variations are handled by parameterizing the NP:

〈Parameter for attribute position〉≡
AOrder = Pre | Post ; -- before or after the noun

One would expect the paradigm of NPs to have type

s : AOrder => Case => Str

giving rise to 2*5 = 10 strings.

However, reflexive possessive pronouns complicate things:

å âmìc fÐloc DefArt PossPronstressed N my friend
å fÐloc mou DefArt N PossPronunstressed my friend
tän âmautoũ fÐlon DefArt PronGen N my own friend

The reflexive possessive (“my own”) in Greek is expressed by the
PronGen agreeing with the subject in gender, number and person.

33 / 44

Hence the paradigm of NPs depends on agreement parameters:

〈lintype of noun phrases〉≡
NP = { s : Agr => AOrder => Case => Str ;

-- reflexive and reflexive possessive use

isPron : Bool ;

e : Case => Str ; -- emphasized pron, or ignored

a : Agr } ;

This blows up the NP paradigm to |Agr|*2*5 = 3*3*3*2*5 = 270
strings, or 180, if we ignore the dual number.

Problem: In principle, one has to expect

NP.s : Agr => Case => Str rather than Case => Str

for other languages as well. Can we afford to embed NPs in VPs?

34 / 44

We need to make the CN-attribute depend on Agr as well, because

I CNs can be modified by reflexive possessives (dep. on Agr),

I CNs built from N2s can have NP objects (dep. on Agr).

〈lintype of common nouns〉≡
CN = { s : Number => Case => Str ; -- noun only

s2 : Agr => Number => Case => Str ; -- attribute

isMod : Bool ; -- attribute nonempty?

rel : Number => Str ; -- relative clause (Agr?)

g : Gender } ;

Participle phrases also may have reflexive possessive parts,

Alexander, having killed his own friend, . . .

35 / 44

Verb Phrases and Clauses

We construct verb phrases from verbs by fixing a voice and storing
objects and modifiers as separate fields of a record:

〈lintype of verb phrases〉≡
oper

VP : Type = {

s : VPForm => Str ;

neg : Bool ; -- TODO: need Pos, Ouk, Mh

obj : Agr => Str ; -- nominal complement

adj : Agr => Str ; -- predicative adj

adv : Str ; -- adverb

ext : Str -- sentential complement

} ;

36 / 44

VPs have finite forms in all tenses, and infinitives and participles in
the main tenses:

〈Paramers of verb phrases〉≡
param

VPForm = VPFin VTense Number Person

| VPImp VPImpForm

| VPInf VTmp

| VPPart VTmp AForm

| VPAdj1 AForm

| VPAdj2 AForm

;

VPImpForm = ImpF ITmp NumPers ;

As participle forms are more common than subordinate clauses,
they belong to the VP and should not be separate APs.

37 / 44

To build a VP from a V, we choose active (for full verbs) or
medium resp. passive voice (for deponents):

〈Basic VP-construction, depending on vtype〉≡
lin UseV = predV ; -- use active voice

oper predV : Verb -> VP = \v ->

{ s = table {

VPFin t n p => case v.vtype of {

-- DepPass has "active" forms in v.med

VFull => v.act ! (Fin t n p) ;

=> v.med ! (Fin t n p) } ;

...

VPAdj2 a => v.vadj1.s ! a

} ;

neg = False ; obj, adj = \\ => [] ; adv, ext = []

} ;

38 / 44

Using reflexive arguments in ReflVP: VPSlash -> VP in English
generalizes to using the medium voice MedV2: V2 -> VP in Greek:

〈VP construction using medium voice〉≡
lin MedV2 = predVmed ; -- use medium voice

oper predVmed : Verb -> ResGrc.VP = \v ->

{ s = table { VPFin t n p => v.med ! Fin t n p ;

VPInf tmp => v.med ! Inf tmp ;

...

VPAdj2 a => v.vadj1.s ! a

} ;

neg = False ;

obj, adj = \\ => [] ; adv, ext = []

} ;

39 / 44

The Greek school-tablet

The British Museum contains a nice greek school tablet of 450 BC
(?) showing the following sentence:

Pujagorac filosofoc Pythagoras the philosopher,
apobac kai grammata didaskwn when going to read letters,
sunebouleuen toic eautoic majhtaic advised his (own) students
enaimonwn apexestai to abstain from meat

The tablet demonstates

I how the participles agree with the subject as it varies in
number (Sg,Pl,Dl), and

I how Pujagorac filosofoc appears in all cases when the
sentence is embedded under a suitable main verb

F.G.Kenyon: Two Greek school-tablets.
Journal of the Hellenistic Society

40 / 44

AllGrcAbs> l -table

(PredVP (DetCN (DetQuant DefArt NumPl) (UseN filosofos_N))

(ComplSlash (SlashV2V advise_V2V

(ComplSlash (SlashV2a abstain_V2)

(UseCNSg (PossNP (UseN meat_N) (DetNP every_Det)))))

(DetCN (DetQuant DefArt NumPl)

(ReflCN (UseN student_N)))))

s (VPres VInd) Pos SVO :

oi(filo’sofoi symboyley’oysi a)pe’cein

panto’s* e)naimo’noy toi~s* e(aytw~n mavhtai~s*

...

s VPlqm Neg VSO :

oy) synebeboyley’kesan oi(filo’sofoi a)pe’cein

panto’s* e)naimo’noy toi~s* e(aytw~n mavhtai~s*

41 / 44

Problems with GF

1. The Greek possessive pronoun is an adjective, not a quantifier.
� sh bÐbloc DefArt PossPron N your book

GF’s PossPron : Pron -> Quant gives PossPron pers :

Quant, whence we need some structural transfer

〈turning a possessive quantifier to possessive NP-attribute〉≡
fun possAdj : NP -> NP ;

def possAdj (DetCN (DetQuant (PossPron pers) num) cn)

= (DetCN (DetQuant DefArt num)

(PossNP cn (UsePron pers))) ;

But in GF we cannot define a function by recursion on the
structure of NPs: NP-constructors aren’t data constructors.

Moreover, there is no posses Prep : Prep in Greek, like in
book of mine. There should not be a possess Prep in the
abstract syntax, nor a part Prep.

42 / 44

2. Using the DefArt is special. Sometimes we’d like to do a case
analysis of the NP given. For example:

I In predicative NPs, drop the article: pìlemoc pat�r pollw̃n
I With postponed adjective, repeat the article: � pìlic � meg�lh
I At sentence beginning, insert but between article and noun:

å dà Swkr�thc . . . vs. âg° dà . . .

We can add to lincat NP a separate Str-field for the
definite article, but it would only be used in such cases.

Doing case analysis on abstract syntax trees would be more
general and natural than storing properties of the absyn trees
in fields of the concrete syntax (like isPron, isMod).

43 / 44

Summary

1. Accentuation and sound laws interact

2. Full linearization type of NPs has paradigm depending on
agreement features

3. Deponent verbs use medium resp. passive forms as active

4. Medium voice of V2-verbs generalizes reflexive use

I Extended the Ancient Greek grammar by numerals, reflexives,
possessives, deponent verbs, participle constructions,

I Other constructions in ExtraGrc like ReciVP, PartAorVP

I Sound laws not yet applied in some noun and verb inflections

I Still a lot of constructions wrong or missing.

44 / 44

