The mechanics of GF

Krasimir Angelov
University of Gothenburg

August 22, 2013

Parallel Multiple Context-Free Grammar (PMCFG)

e Well known grammar formalism (Seki at al., 1991)

@ Natural extension of CFG that produces tuples of strings
instead of simple strings

@ It is trivial to implement classical context-sensitive languages -
{a"b"c"|n > 0}:

GF Core Language = PMCFG

The parser uses a language which is a subset of GF.

The linearization types are flat tuples of strings:

lincat C = Str « Str x ... * Str;

The linearizations are simple concatenations:
linf xy=<x.pl,x.p2+4++ y.p3 >;

No operations are allowed

No variants are allowed

No parameters and tables

No pattern matching

No gluing is allowed (i.e. + but not +)

{a"b"c"|n > 0} in PMCFG

cat N, S

funz: N
s:N—N
c:N—S

lincat N = Str x Str % Str
S = Str
inz =<, >
sx =<"a' H+ x.pl,"b" H x.p2,"c" H x.p3 >
cx = x.pl ++ x.p2 + x.p3

GF = GF Core

Operations elimination

Variants elimination

@ Parameter types elimination

Linearization rules transformations

@ Common subexpressions optimization

Operations elimination

The operations are NONRECURSIVE functions. They are
evaluated at compile time. (macroses)

GF GF Core
oper mkN noun = case noun of { lin apple_N = < "apple”,"apples” >;
_+"s" = < noun, noun + "es” >; plus_N = < "plus”, "pluses” >;

- = < noun, noun+"s" >
i
lin apple_N = mkN "apple”;

plus_N = mkN "plus”;

Note: the pattern matching in mkN was eliminated

Variants elimination

The variants are just expanded:

GF

lin girl.N = mkN ("tjej" | "flicka");

GF Core

lin girl_.N{ = mkN "tjej”;
girl_-Ny = mkN "flicka";

Parameter Types Elimination

lincat NP = {s: Case = Str; g : Gender;n: Number; p : Person}
param Case = Nom|Acc|Dat;

Gender = Masc|Fem|Neutr;

Number = Sg|PI,

Person = P1|P2|P3,;

Table Types Elimination

A value of type Case = Str looks like:
table {Nom = s1; Acc = sp; Dat = s3}
We could replace it with the tuple:
< S1,S52,53 >
Then in general type like A = Str is equivalent to:

Str x Strx...x Str

n times

where n is the number of values in the parameter type A.

Parameter Fields Elimination

GF
lincat NP = {s:...;g: Gender;n: Number;p : Person}
GF Core
lincat NPy = Str * Str x Str; — Masc; Sg, P1
NPy = Str * Str x Str; — Masc; Sg, P2
NP3 = Str x Str x Str; — Masc; Sg, P3
NP4 = Str * Str x Str; — Masc; PI, P1

NP1g = Str * Str * Str; — Neutr; Pl, P3

Linearization Rules Transformation

GF
fun AdjCN : AP — CN — CN;
lin AdjCN ap cn = {
s = ap.slcn.g +H cn.s;
g =cng
i
GF Core
fun AdjCN; : AP — CNy — CNy; —Masc

lin AdjCN; ap cn = < ap.pl + cn.pl >

fun AdjCN, : AP — CN> — CNy; —Fem
lin AdjCN, ap cn = < ap.p2 + cn.pl >

fun AdjCN; : AP — CN3 — CN3; —Neutr
lin AdjCN3 ap cn = < ap.p3 +H- cn.pl >

No pattern matching

Allowed
oper mkN noun = case noun of {
_+4"s" = < noun, noun + "es"” >;
- = < noun, noun +"s" >
h
Not Allowed
lin DetCN det cn = case det.s of {
"=
= ...

}

Hint: use parameter which says whether the string is empty

No gluing

Allowed

lin DetCN det cn = case det.spec of {

Indefinite = case cn.g of {Utr = "en"; Neutr = "ett” } ++ cn.s

Not Allowed

lin DetCN det cn = case det.spec of {
Definite = cn.s + case cn.g of {Utr = "en"; Neutr = "et" };

}

Hint: for agglutinative languages (Turkish, Finnish, Estonian,
Hungarian, ...) use custom lexer

Agglutinatination

@ Some languages have pottentially infinite set of words:

Turkish:

anlamiyorum = anla(root) -mi(negation) -yor(continuous) -um(first person)
I don't understand

@ The grammar could be based on roots and suffixes instead of
on words:

Hanlarv —'—i— H&_l_n _’_'_ nmin _}_,_ v1&+17 ++_ nyorn ++_ H&_l_n _’_'_ numn

@ The lexer/unlexer are responsible to produce the real words

Summary

o GF = (GF Core = PMCFG)
e Linearization is overload resolution

o Parsing is search

	Introduction
	Conclusion

