vmoudo

acuu

8 1 8 &
% 5 2
2 2

@

A Frame Semantic Abstraction Layér
to the GF Resource Grammar Library

eysudlS|

Normunds Gruzitis
Institute of Mathematics and Computer Science

University of Latvia

Third GF Summer School: Frontiers of Multilingual Technology: Scaling Up Grammatical Resources
Frauenchiemsee, Bavaria, Germany
18th—30th August, 2013

Outline

e A brief introduction to FrameNet

* FrameNet as a semantic APl to GF RGL

— For GF application grammar developers
e Case-study: MOLTO Phrasebook

* A generalized FrameNet application grammar
— For semantic parsing (semantic role labeling)

— For natural language generation (from FrameNet-annotated
knowledge bases)

Grammatical Framework (GF)

* Atoolbox for rapid development of multilingual CNLs

— Provides a general-purpose resource grammar library (RGL) that
encapsulates the low-level linguistic knowledge

— All resource grammars implement a common syntactic API

— Domain-specific, semantic application grammars (CNLs) are built on
top of resource grammars

* Application grammar developers are mapping the semantic
predicates to their syntactic constructors from scratch for
each new/ported application grammar

— Hypothesis: these mappings can be reused to a large extent providing
a frame semantic abstraction layer to GF RGL

FrameNet (https://framenet.icsi.berkeley.edu)

* A semantic framework focused on frame semantics

— ldentifies >1000 frames: prototypical, language-independent
situations with participating frame elements (semantic roles) — this
can be seen as a semantic ‘APl

* We will focus on verb frames (~600) and their core elements

— Identifies language-specific lexical units that evoke frames and their
elements based on syntactic valence patterns

* Mappings are derived from FrameNet-annotated corpora (being provided
for an increasing number of languages)

e Limitation: FrameNet is not entirely formal and computational

— There has been work on mapping FrameNet, for instance, to the formal SUMO
ontology, or to other lexical resources like VerbNet and WordNet

http://framenet.icsi.berkeley.edu/

Example frame

Lexical Unit Index

Placing
Definition:

Generally without overall (translational) motion, an es a T at a location, the [ERE, which is profiled. In this frame, the LR is under the
control of the [N/ eEIEE at the time of its arrival at the [€[e:1].

PLACED}his briefcasejonthe floor}
This frame differs from Filling in that it focuses on the LML rather than the effect on the [E5Z] entity. It differs from Removing in focusing on the ERE] rather
than the EINes of motion for the IELLE.

FEs:

Core:

Agent [Agt] The [RELL is the person (or other force) that causes the LTS to move.
Semantic Type: Sentient GERVENCY (W8] the food on the table.

Cause [Cause]
Excludes: Agent Grass , which is sown with clover , provides rich pasture for cattle in summer and the clover is gl Clgel E 80 VL]
nitrogen into the soil .

Goal [Goal] The FE [€5E] is the location where the ITERLE ends up. This FE is profiled by words in this frame.
Semantic Type: Goal AL CEREUCIP L ACEDRER(slelsjon the tablel
heme [Thm] The UAELE is the object that changes location during the Placing.
Semantic Type: The waiter [WXe]=) on the table.
Physical_object
Non-Core:
The [JZE is the setting into which the is placed.

She emptied a wash basket full of towels and BJTJOEIIE®] them EIE R,

Example lexical entries

place.v

Frame: Placing
Definition:
COD: put in a particular position

Frame Elements and Their Syntactic Realizations

The Frame Elements for this word sense are (with realizations):

[Frame Element|Number Annotated| Realization(s) |

CNI-(27)
DNI.-- (1)

INL-- (1)
NP.Ext (33)
PP[by].Dep (3)

Cause | () | NP.Ext (1) |

NP.Ext (1)
PP[at].Dep (10)
NP.Obj (1)
PP[above].Dep (2)
PP[against].Dep (5)
PP[around].Dep (3)

Agent

(65)

Clear Sentences Turn Colors Off

M4HelPLACED

a ladderjagainst an upper window«lyylel:Ie R¥]e}
AR CAhelPLACED]a paimjagainsther browi
X] he night-lighjagainstthe walllshe s Nelo R (y1=
[X] On slaughtering days all the gates were carefully locked and

[X] The pin is inserted into the device , [RIEL: WD -

put.v

Frame: Placing

Definition:

COD: move to or place in a particular position.

Valence Patterns:

These frame elements occur in the following syntactic patterns:

INumber Annotated | Patterns
[1TOTAL T e [
(1) CNI PP[for] PP[until]|| PP[under]| CNI

- - Dep Dep Dep -
[1TOTAL [[AgenICoa [| |
(1) NP PPIin]

- Ext Dep
[1TOTAL JIAgeni][GoallN [Vanner [Theme il NI
(1) NP PP[over] AVP NP

- Ext Dep Dep Obj

Clear Sentences Turn Colors Off

[X][snatched Radish back and gently, :

FrameNet vs. WordNet

artifact
person el N
< : \
N container ‘.
/// \\\ 4 \\\
female | | adult move : \\
> « f jar furniture
N/ ! A A
N I I I
\ 7 1 I 1
the woman PLACED a big vase on the table
NP.Ext Placing NP.Dep PP[on].Dep
T Agent | | Theme T
(subject) (object) Goal
(modifier)

vs. VerbNet: ~850 frame elements (FN) vs. ~25 general thematic roles (VN)
e.g., FN.Being_employed.Core: Employee, Employer, Field, Position, Task

Observations developing GF gramars

* When one gets used to..

— the syntactic API
— the typical syntactic patterns and trade-offs

e it becomes arather routine work to “copy-paste-edit” the
clause and VP level patterns

— among different functions, languages, and even applications

— providing a miniature domain-specific framenet for each application

* But beware of “exceptions”: verb-dependent realizations of
clauses (e.g. love vs. like in Russian, Italian, Latvian)

— Anowm M06at0 mebsa o (I love you)

— Anomy HPABAKO 3MY MUYUYace) 2 MHE) HPABUMEA 3Ma MUYUUGom
(*I am pleasing this pizza* - | like this pizza)

Proposal: FrameNet API to RGL

* Building on top of GF RGL (but not extending it)
— A common semantic API

— Provides the mapping from the semantic frames and their
core elements to their syntactic, language-dependent
realization

e Application grammar (CNL) developers would
manipulate with semantic constructors

— Functions: the robust verb frames

— Arguments: the core elements of the verb frames

* From the syntactic view, they can be both arguments and adjuncts

Case-study: MOLTO Phrasebook

* Precise translation of standard touristic phrases

* Defines ~300 functions in the abstract syntax

— a lot of idiomatic phrases

— 20+ “actions” = frames (ALive, ALike, AWant, AWantGo etc.)

e |live in Belgium].]) PSentence : Phrase

L IWGntGpizza[-] Sppop . lSentence

 [Do] you like this pizza[?] |

* | want to go to a museum|.] PropAction : Proposition

|
Residence ALive : Action
Abito in Belgio[.] < | / \
(Italian) IMale : Person Belgium : Country
Resident Location

Phrasebook: English

Belgium = mkNP (mkPN "Belgium") ;
Museum = mkPlaceKind "museum" "at" ;
Pizza = mkCN (mkN "pizza") ;

-~ Cl -> NP VP // VP -> VP Adv // Adv -> Prep NP
ALive pers country = mkCl pers.name
(mkVP (mkVP (mkV "live")) (mkAdv SyntaxEng.in_Prep country)) ;

-- C1 -> NP V2 NP
ALike pers item = mkCl pers.name (mkV2 (mkV "like")) item ;

-- Cl1 -> NP V2 NP
AWant pers obj = mkCl pers.name (mkV2 (mkV "want")) obj ;

-- Cl1 -> NP W VP // VP -> VP Adv
AWantGo pers place = mkCl pers.name SyntaxEng.want_VV
(mkVP (mkVP IrregEng.go V) place.to) ;

Semantic vs. syntactic constructors

e AlLive p co =

Residence live V p.name NIL co
Resident Co_resident Location

 ALike p it =

Experiencer focus Like V p.name 1t NIL
Experiencer Content Topic

* AWantGo p pl =
Desiring want V p.name (Motion go V NIL pl.name)

Experiencer Event Source Goal
_ Function | Amguments | Value_
Residence V Resident Location Co_resident Cl
Experiencer_focus V Experiencer Content Topic Cl
Motion V Theme Source Goal Cl
Motion V Source Goal VP

Statistics from a FrameNet corpus

* E.g. the lexical entry Residence.live:

_cocre Lol Mloa e

Resident NP . Ext (90%) 98 Resident Location
xNI.-- (9%) 71% NP.Ext PP.Dep

Co_resident 14 PP.Dep (86%) 17% NP.Ext AVP
NI.— (14%)

) 7 Resident Co_resident
Location 131 / PR.Dep (81%)

AVPBep (13%) 86% NP.Ext PP.Dep
7 Resident Co_resident Location

with 9 _ _in 72 86% NP.Ext PP.Dep PP.Dep
among 3 ' on 8 112
at 4
79%

P.S. In GF, Adv includes PP

Assumptions

* For every combination of FE types, there is a common
syntactic realization of a frame that is reused by most verbs

— There can be different agreement patterns that are specific to
particular verbs or groups of verbs (systematic exceptions)

— Prepositions, in general, do not depend on the frame, although often
there is a dominant preposition per frame element (if realized as a PP)

* Inthe CNL settings, it is often sufficient that only core
elements (according to FrameNet) are available

* Itis possible to choose a default lexical unit per frame to be
used in the linearization, if a specific verb is not provided

— The most general and/or the most frequently used LU

Prototype #1: frame elements

incomplete concrete ElementsI of Elements = Cat *x
open Syntax, Maybe in {

tincat

l ~850 different FEs
| ~500 are used only in one frame |

Clause = {np : NP ; vp : VP} ; T TTTTTmTmmTmTon

Verb = {v : V ; prep : Prep} ;

Frame = Clause ;

LU = Maybe Verb ;

Agent_NP = Maybe NP ;

Area_Adv = Maybe Adv ;

Co_resident_Adv = Maybe Adv ;

Content_NP = Maybe NP ;

Direction_Adv = Maybe Adv ;

Distance Adv = Maybe Adv ;

Employee_NP = Maybe NP ;

Employer_Adv = Maybe Adv ;

Event_VP = Maybe VP ;

Experiencer_NP = Maybe NP ;

Field Adv = Maybe Adv ;

The Maybe type

Maybe : (t : Type) —> Type = \t —> {inner : t ; exists : Bool} ;

Just : (T : Type) > T —> Maybe T = _,t —> {
inner = t ;
exists = True

}os

Nothing : (T : Type) —> Maybe T = _ —> {
inner = variants {} ;
exists = False

}os

fromMaybe : (T : Type) > T —> Maybe T —> T = _,n,m —>
case m.exists of {
True => m.inner ;
False => n

Fos

Prototype #1: frames (abstract syntax)

abstract Frames = Elements *x {

—— RESIDENCE: This frame has to do with people (the Residents) residing in Locations...
—— Co_resident: A person or group of people that the resident is staying with or among.
—— Location : The place in which somebody resides.

—— Resident : The individual(s) that reside at the Location.

RESIDENCE : Co_resident_Adv > Location_Adv —> Resident_NP -> LU —> Frame ;

—— PLACING: Generally without overall (translational) motion, an Agent places a Theme...
—— Cause excludes Agent. (Only one questionable example in the corpus; similar to Agent.)
PLACING : Agent_NP > Goal_Adv —> Theme_NP -> LU -> Frame ;

—— DESIRING: An Experiencer desires that an Event occur...

—— Event : The change that the Experiencer would like to see.

-— Experiencer :

—— Focal_participant: The entity that the Experiencer wishes to be affected by some Event.
—— Location_of_Event: The Location_of_Event is the place involved in the desired Event.

-— Event and Focal_participant are (xactuallyx) mutually excluding.

Location_of_Event is (*actually*) non-core.
DESIRING Event : Event_VP -> Experiencer_NP —> LU —> Frame ;
DESIRING_Focal_participant : Experiencer_NP —> Focal_participant_NP —> LU —> Frame ;

—— BEING_EMPLOYED: ...
BEING_EMPLOYED_Task_Adv : Employee_NP -> Employer_Adv —> ... -> Task_Adv -> LU -> Frame ;
BEING_EMPLOYED_Task_VP : Employee_NP -> Employer_ Adv —> ... -> Task_VP -> LU -> Frame ;

Prototype #1: frames in English

concrete Frameséng of Frames = ElementsEng sxx
open SyntaxEng, ExtraEng, (P = ParadigmsEng), (L = LexicalUnitsEng), Maybe in {

RESIDENCE co_resident location resident lu =
let lu' : Verb = fromMaybe Verb (L.1live_V) 1lu
in 1in Clause {
np = fromMaybe NP noNP resident ;

vp = mkVP
(mkVP
(mkVP lu'.v)
(fromMaybe Adv noAdv co_resident)

)
(fromMaybe Adv noAdv location)

r-r—--——--m=---=-m=-m=-m=-m=-m=-=-m=-=-"-=-"-"=-"—-"=-"-"-"-"=-"—-"=-"=-"=-"=-"=-"-"=-"---"-"-"--"=-=--"--"-"-"=-"="-"----"-="-="-="-=-"=-—"=-"—"=-"—"=-—"=-—=-= 1
I
I

Side effect: all core elements (= essential to the meaning of a frame) appear in AST even |

if they are not directly expressed in the sentence (P.S. Well, currently no FEs will appear...) |

Prototype #1: frames in English

PLACING agent goal theme lu =
let W' : Verb = fromMaybe Verb (L.place_V) lu
in 1in Clause {
np = fromMaybe NP noNP agent ;
vp = mkVP
(mkVP

(P.mkV2 lu'.v lu'.prep)

(fromMaybe NP noNP theme)

(fromMaybe Adv noAdv goal)

Prototype #1: frames in English

DESIRING_Event event experiencer lu =

let wu' : Verb = fromMaybe Verb (L.want_V) 1lu

in 1lin Clause {

np = fromMaybe NP noNP experiencer ;
vp = mkVP

(P.mkVV lu'.v)

(fromMaybe VP noVP event)

Prototype #1: frames in English

BEING_EMPLOYED _Task_VP employee employer field place_of_employment position task lu
let lu'

in lin

np
vp

: Verb = fromMaybe Verb (L.work_V) Llu

Clause {

fromMaybe NP noNP employee ;
mkVP
(mkVP
(mkVP
(mkVP
(mkVP
(mkVP lu'.v)

(fromMaybe Adv noAdv field)
)

(fromMaybe Adv noAdv position)
)

(PurposeVP (fromMaybe VP noVP task))
)

(fromMaybe Adv noAdv employer)
)

(fromMaybe Adv noAdv place_of_employment)

Prototype #1: frames in Latvian

concrete LexicalUnitsLav of LexicalUnits = ElementslLav xx

open ParadigmsLav in {

oper mkVerb : V —> Prep —> Verb = \v,p —> lin Verb {v = v ; prep = p} ;

lin ' Ieft (subject) valence; Nom by default
feel_V = mkVerb (mkV "izjust" "izjutu" "1ZJutu") acc_Prep ;
go_V = mkVerb (mkV "doties" "dodos" "devos") acc_Prep ;
like_V = mkVerb (mkV "patikt" "patiku" "patiku" dative) nom_Prep ;
live_V = mkVerb (mkV "dzivot" second_conjugation) acc_Prep ;
love_V = mkVerb (mkV "milet" third_conjugation) acc_Prep ;
move_V = mkVerb (mkV "parvietoties" second_conjugation) acc_Prep ;
place_V = mkVerb (mkV "novietot" second_conjugation) acc_Prep ;
want_V = mkVerb (mkV "véléeties" third_conjugation) acc_Prep ;
work_V = mkVerb (mkV "stradat" second_conjugation) acc_Prep ;

Otherwise, at this level of FE abstraction, copy-paste from English!
Thus, a functor for frames should be possible...

Usage: in a Phrasebook functor

incomplete concrete WordsI of Words =
open FrameNet, LexicalUnits, Maybe, Syntax in {

ALike p item =
let cl : Clause =
EXPERIENCER _FOCUS

(Just Content NP item)
(Nothing Event_Adv)
(Just Experiencer_NP p.name)
(Nothing Topic_Adv)
(Just LU like V)

in mkCl cl.np cl.vp ;

AWant p obj =
let cl : Clause =
DESIRING

(Just Experiencer_NP p.name)
(Just Focal_participant_NP obj)
(Nothing LU)

in mkCl cl.np cl.vp ;

Usage: in a Phrasebook functor

AWantGo p place =
let cl : Clause =

DESIRING
(Just Event_ VP
(MOTION
(Nothing Direction_Adv)
(Nothing Distance_Adv)
(Just Goal_Adv place.to)
(Nothing Path_Adv)
(Nothing Source_Adv)
(Nothing Theme_NP)
(Just LU go_V)
). vp
)
(Just Experiencer_NP p.name)
(Nothing LU)

in mkCl cl.np cl.vp ;

Usage: as a general application grammar

* At this level of syntactic abstraction of frame elements..

— .. do we really need the full FrameNet just to facilitate the
development of certain kind of application grammars?

— Many frames are implemented in the same way as some other frames

* A smaller set of more general (more syntactic) frames might be sufficient
to achieve the same effect

* The FrameNet resource library could be used on its own:

— for semantic parsing
— for natural language generation (from FrameNet-annotated data)

DESIRING
/N
Experiencer T Event
|

i Pron want V MOTION

/ \
T Goal

Semantic parsing (SRL)

 ToDo: functions that return frame elements,

— a technical frame element for the target word,
— decomposition of elements of type Adv

* Open issues:

— A closed set of target verbs per frame
— A closed set of prepositions per frame element (if realized as a PP)

— Support for variable word order (Adv modifiers)

* Meanwhile, a statistical FrameNet parser can be used, e.g. for IE

I want to go to a museum
DESIRING MoTioN LOCALE_BY_USE
http://demo.ark.cs.cmu.edu/parse Locale
Experiencer Event

Theme Goal

http://demo.ark.cs.cmu.edu/parse
http://demo.ark.cs.cmu.edu/parse

Natural language generation

Being_born

Education_teaching
Education_teaching
Education_teaching

Being_employed
Being_employed
Being_employed
Being_employed
Being_employed
Being_employed

Win_prize
Win_prize
Win_prize
Win_prize

Time

1933. gada 3. maijs

Institution

Tukuma 1. vidusskola
Latvijas Universitate
Augstakais literarais [..]

Employer

izdevnieciba Liesma
Latvijas rakstnieku [..]
AP tautas izglitiba

Latvijas Instituts

Jarmalas 1. vidusskola

Time

1983. gads
1972. gads
1977. gads

Place
Sloka pagasts

Subject

vesture un filologija

Place of employment

Prize

Tautu draudzibas [..]
Nopelniem bagats [..]
Tauta dzejnieka goda [..]
1991. gada barikazu [..]

Relatives

zvejnieka gimene |Imants Ziedonis

Time

1952. gads
1959. gads
1964. gads

Position
> redaktors
> sekretars
> loceklis
> loceklis

> padomnieks

> skolotajs

Rank

Child

Place
Tukums

Maskava

Time

1998. gads
1997. gads

Organizer

Student

Imants Ziedonis
Imants Ziedonis
Imants Ziedonis

Employee

Imants Ziedonis
Imants Ziedonis
Imants Ziedonis
Imants Ziedonis
Imants Ziedonis
Imants Ziedonis

Competitor

Imants Ziedonis
Imants Ziedonis
Imants Ziedonis
Imants Ziedonis

E.g. given a DB of CV-style facts extracted from Lav newswire texts (using a statistical parser)
—> provide a multilingual NL interface

* Frames could have been triggered by nouns = paraphrasing using verbal constructions
* The original prepositions/cases might not be available = arguments vs. adjuncts
* Sentence planning and splitting, anaphora generation, parameter to change the voice etc.

Prototype #2: decomposing Adv

incomplete concrete ElementsI ... {
lincat PP = {prep : Maybe Prep ; np : NP} ;

}
abstract Frames ... {
fun PLACING : Agent_NP -> Goal_PP —> Theme_NP —> LU —> Frame ;
}
concrete FramesEng ... {

oper noPP : PP = 1lin PP {prep = Just Prep P.noPrep ; np = noNP} ;

oper toAdv : Maybe PP —> Prep —> Adv = \givenPP,defaultPrep —>
Let givenPP' : PP = fromMaybe PP noPP givenPP

in SyntaxEng.mkAdv
(fromMaybe Prep defaultPrep givenPP'.prep)

givenPP'.np ;

Prototype #2: decomposing Adv

BEING_EMPLOYED_Task_PP employee employer field ... position task lu =
let W' : Verb = fromMaybe Verb (L.work_V) 1lu

in lin Clause {
np = fromMaybe NP noNP employee ;

vp = mkVP
(mkVP
(mkVP
(mkVP
(mkVP

(mkVP lu'.v)

(toAdv field in_Prep))
)

(toAdv position (P.mkPrep| "as"))
)

(toAdv task on_Prep)
)

(toAdv employer for_Prep)

Prototype #2.1: minimizing Maybe

incomplete concrete ElementsI ... {
Agent_NP = NP ;
Area_ PP = PP ;
Event_VP = VP ;

}

concrete FramesEng ... {

lin RESIDENCE co_resident location resident lu =
let lu' : Verb = fromMaybe Verb (L.live_V) lu
in 1lin Clause {
np = resident ;
vp = mkVP
(mkVP
(mkVP lu'.v)
(toAdv co_resident with_Prep)

)

(toAdv location in_Prep)

}os

oper toAdv : PP —> Prep —> Adv = \givenPP,defaultPrep —
SyntaxEng. mkAdv
(fromMaybe Prep defaultPrep givenPP.prep)
givenPP.np ;

Conclusions and future directions

FrameNet APl would facilitate the development of certain GF
application grammars

— Frames can be specified in the functor of an application grammar

— Resulting grammars would be more generic and easier to extend

Language-specific FrameNet resource grammars can be
acquired semi-automatically from FrameNet data that include
mapping to syntactic patterns and statistics from FrameNet-
annotated corpora

— Frames might be implemented even in the functor of the FN library

Language generation and semantic parsing directly with the
FrameNet library (as a general application grammar)

