
A Frame Semantic Abstraction Layer 
to the GF Resource Grammar Library 

Normunds Grūzītis 
Institute of Mathematics and Computer Science 

University of Latvia 

Third GF Summer School: Frontiers of Multilingual Technology: Scaling Up Grammatical Resources 
Frauenchiemsee, Bavaria, Germany 

18th–30th August, 2013 



• A brief introduction to FrameNet 

• FrameNet as a semantic API to GF RGL 

– For GF application grammar developers 

• Case-study: MOLTO Phrasebook 

• A generalized FrameNet application grammar 

– For semantic parsing (semantic role labeling) 

– For natural language generation (from FrameNet-annotated 
knowledge bases) 

Outline 



Grammatical Framework (GF) 

• A toolbox for rapid development of multilingual CNLs 

– Provides a general-purpose resource grammar library (RGL) that 
encapsulates the low-level linguistic knowledge 

– All resource grammars implement a common syntactic API 

– Domain-specific, semantic application grammars (CNLs) are built on 
top of resource grammars 

• Application grammar developers are mapping the semantic 
predicates to their syntactic constructors from scratch for 
each new/ported application grammar 

– Hypothesis: these mappings can be reused to a large extent providing 
a frame semantic abstraction layer to GF RGL 



FrameNet (https://framenet.icsi.berkeley.edu) 

• A semantic framework focused on frame semantics 

– Identifies >1000 frames: prototypical, language-independent 
situations with participating frame elements (semantic roles) – this 
can be seen as a semantic ‘API’ 

• We will focus on verb frames (~600) and their core elements 

– Identifies language-specific lexical units that evoke frames and their 
elements based on syntactic valence patterns 

• Mappings are derived from FrameNet-annotated corpora (being provided 
for an increasing number of languages) 

• Limitation: FrameNet is  not entirely formal and computational 

– There has been work on mapping FrameNet, for instance, to the formal SUMO 
ontology, or to other lexical resources like VerbNet and WordNet 

http://framenet.icsi.berkeley.edu/


Example frame 



Example lexical entries 



the woman 
NP.Ext 

PLACED 
Placing 

a big vase 
NP.Dep 

on the table 
PP[on].Dep 

FrameNet vs. WordNet 

female 

Agent Theme 

Goal 

vs. VerbNet: ~850 frame elements (FN) vs. ~25 general thematic roles (VN) 
e.g., FN.Being_employed.Core: Employee, Employer, Field, Position, Task 

adult 

person 

jar 

container 

artifact 

furniture 

move 

(subject) 

(modifier) 

(object) 



Observations developing GF gramars 

• When one gets used to.. 

– the syntactic API 

– the typical syntactic patterns and trade-offs 

• ..it becomes a rather routine work to “copy-paste-edit” the 
clause and VP level patterns 

– among different functions, languages, and even applications 

– providing a miniature domain-specific framenet for each application 

• But beware of “exceptions”: verb-dependent realizations of 
clauses (e.g. love vs. like in Russian, Italian, Latvian) 

– Я[NOM] люблю тебя[ACC]  (I love you) 

– Я[NOM] нравлю эту пиццу[ACC]   Мне[DAT] нравится эта пицца[NOM] 

(*I am pleasing this pizza*    I like this pizza) 



Proposal: FrameNet API to RGL 

• Building on top of GF RGL (but not extending it) 

– A common semantic API 

– Provides the mapping from the semantic frames and their 
core elements to their syntactic, language-dependent 
realization 

• Application grammar (CNL) developers would 
manipulate with semantic constructors 

– Functions: the robust verb frames 

– Arguments: the core elements of the verb frames 

• From the syntactic view, they can be both arguments and adjuncts 



Case-study: MOLTO Phrasebook 

• Precise translation of standard touristic phrases 

• Defines ~300 functions in the abstract syntax 

– a lot of idiomatic phrases 

– 20+ “actions” ≈ frames (ALive, ALike, AWant, AWantGo etc.) 

• I live in Belgium[.] 

• I want a pizza[.] 

• [Do] you like this pizza[?] 

• I want to go to a museum[.] 

Residence 

Location Resident 

Abito in Belgio[.] 
(Italian) 

PSentence : Phrase 

| 

SProp : Sentence 

| 

PropAction : Proposition 

| 

ALive : Action 

/       \ 

IMale : Person    Belgium : Country 



Phrasebook: English 

Belgium = mkNP (mkPN "Belgium") ; 

Museum = mkPlaceKind "museum" "at" ; 

Pizza = mkCN (mkN "pizza") ; 

-- Cl -> NP VP // VP -> VP Adv // Adv -> Prep NP 

ALive pers country = mkCl pers.name 
  (mkVP (mkVP (mkV "live")) (mkAdv SyntaxEng.in_Prep country)) ; 

-- Cl -> NP V2 NP 

ALike pers item = mkCl pers.name (mkV2 (mkV "like")) item ; 

-- Cl -> NP V2 NP 

AWant pers obj = mkCl pers.name (mkV2 (mkV "want")) obj ; 

-- Cl -> NP VV VP // VP -> VP Adv 

AWantGo pers place = mkCl pers.name SyntaxEng.want_VV 
  (mkVP (mkVP IrregEng.go_V) place.to) ; 



Semantic vs. syntactic constructors 

Function Arguments Value 

Residence V  Resident  Location  Co_resident Cl 

Experiencer_focus V  Experiencer  Content  Topic Cl  
Motion V  Theme  Source  Goal Cl 

Motion V         Source  Goal VP 

• ALive p co = 

– Residence live_V  p.name  NIL        co 
                        Resident   Co_resident   Location 

• ALike p it = 

– Experiencer_focus like_V  p.name    it     NIL 
                                  Experiencer   Content  Topic 

• AWantGo p pl = 

– Desiring want_V  p.name   (Motion go_V NIL   pl.name) 
                         Experiencer  Event          Source  Goal 



Statistics from a FrameNet corpus 

• E.g. the lexical entry Residence.live: 

Core FE Total Pattern 

Resident 143 NP.Ext (90%) 
xNI.-- (9%) 

Co_resident 14 PP.Dep (86%) 
xNI.– (14%) 

Location 131 PP.Dep (81%) 
AVP.Dep (13%) 

Total Patterns 

98 Resident Location 

71% NP.Ext PP.Dep 

17% NP.Ext AVP 

7 Resident Co_resident 

86% NP.Ext PP.Dep 

7 Resident Co_resident Location 

86% NP.Ext PP.Dep PP.Dep 

112 

79% 

in 72 
on 8 
at     4 
... 

with  9 
among 3 

=/= 

P.S. In GF, Adv includes PP 



Assumptions 

• For every combination of FE types, there is a common 
syntactic realization of a frame that is reused by most verbs 

– There can be different agreement patterns that are specific to 
particular verbs or groups of verbs (systematic exceptions) 

– Prepositions, in general, do not depend on the frame, although often 
there is a dominant preposition per frame element (if realized as a PP) 

• In the CNL settings, it is often sufficient that only core 
elements (according to FrameNet) are available 

• It is possible to choose a default lexical unit per frame to be 
used in the linearization, if a specific verb is not provided 

– The most general and/or the most frequently used LU 



Prototype #1: frame elements 

~850 different FEs 
~500 are used only in one frame 



The Maybe type 



Prototype #1: frames (abstract syntax) 



Prototype #1: frames in English 

Side effect: all core elements (= essential to the meaning of a frame) appear in AST even 
if they are not directly expressed in the sentence (P.S. Well, currently no FEs will appear...) 



Prototype #1: frames in English 



Prototype #1: frames in English 



Prototype #1: frames in English 



Prototype #1: frames in Latvian 

Otherwise, at this level of FE abstraction, copy-paste from English! 
Thus, a functor for frames should be possible... 

left (subject) valence; Nom by default 

right (object) valence; Acc by default 



Usage: in a Phrasebook functor 



Usage: in a Phrasebook functor 



Usage: as a general application grammar 

• At this level of syntactic abstraction of frame elements.. 

– .. do we really need the full FrameNet just to facilitate the 
development of certain kind of application grammars? 

– Many frames are implemented in the same way as some other frames 

• A smaller set of more general (more syntactic) frames might be sufficient 
to achieve the same effect 

• The FrameNet resource library could be used on its own: 

– for semantic parsing 
– for natural language generation (from FrameNet-annotated data) 

DESIRING 
/   |   \ 

       Experiencer   T    Event             
 |        |      |    

i_Pron   want_V  MOTION   
               /     \ 

                 T     Goal 



Semantic parsing (SRL) 

• ToDo: functions that return frame elements, 

– a technical frame element for the target word, 
– decomposition of elements of type Adv 

• Open issues: 

– A closed set of target verbs per frame 
– A closed set of prepositions per frame element (if realized as a PP) 

– Support for variable word order (Adv modifiers) 

• Meanwhile, a statistical FrameNet parser can be used, e.g. for IE 

http://demo.ark.cs.cmu.edu/parse 

http://demo.ark.cs.cmu.edu/parse
http://demo.ark.cs.cmu.edu/parse


Natural language generation 

E.g. given a DB of CV-style facts extracted from Lav newswire texts (using a statistical parser) 
 provide a multilingual NL interface 

 * Frames could have been triggered by nouns  paraphrasing using verbal constructions 
 * The original prepositions/cases might not be available  arguments vs. adjuncts 
 * Sentence planning and splitting, anaphora generation, parameter to change the voice etc. 



Prototype #2: decomposing Adv 



Prototype #2: decomposing Adv 



Prototype #2.1: minimizing Maybe 



Conclusions and future directions 

• FrameNet API would facilitate the development of certain GF 
application grammars 

– Frames can be specified in the functor of an application grammar 

– Resulting grammars would be more generic and easier to extend 

• Language-specific FrameNet resource grammars can be 
acquired semi-automatically from FrameNet data that include 
mapping to syntactic patterns and statistics from FrameNet-
annotated corpora 

– Frames might be implemented even in the functor of the FN library 

• Language generation and semantic parsing directly with the 
FrameNet library (as a general application grammar) 


