
badge

Managing Unconstrained Natural

Language
Challenges & Ideas for Deploying CNL Systems

Rogan Creswick| GF Summer School | August 29, 2013

creswick@galois.com

© 2013 Galois, Inc. All rights reserved.

Natural Language @ Galois

Computers should do
what you expect.

Human-
Computer
Interaction

NL Interfaces

Visualizations

DSLs

Crypto

Security Policy

Static Analysis

Formal
Methods

SWE tools

Ensuring Trustworthiness

in Critical Systems.

© 2013 Galois, Inc. All rights reserved.

Frequent Requests

Parse
Documents

• Translate Documents to Formal
Language:

• W3C Guidelines to Tests

• Policy (eg. HIPAA) to XML

Explain
Results

• Formal Language to NL:

• Audit logs

• Query results

• Output to different audiences:

• Developers

• Legal

• SME

© 2013 Galois, Inc. All rights reserved.

Example: Executable Specifications

W3C accessibility

guidelines

Executable tests

(FiveUI)

© 2013 Galois, Inc. All rights reserved.

NL Interfaces to Formal Languages

Abstract Syntax

© 2013 Galois, Inc. All rights reserved. …

Application Grammars in General

Abstract Syntax

Computational Backend

Legal

Vernacular

User

Documentation

© 2013 Galois, Inc. All rights reserved.

Linearization Works Great!

Abstract Syntax

Computational Backend

© 2013 Galois, Inc. All rights reserved.

Input is problematic

Phrasebook> p "I'd like pizza"

The parser failed at token "I'd"

Phrasebook> p "I would like pizza"

The parser failed at token "would"

Phrasebook> p "I want pizza"

The parser failed at token "pizza"

Phrasebook> p "I want pizza, please"

The parser failed at token "pizza,"

Phrasebook> p "I want a pizza, please"

The parser failed at token "pizza,"

Phrasebook> p "I want a pizza"

© 2013 Galois, Inc. All rights reserved.

Linearization can raise expectations

• Convincing the audience that the system is fragile is
hard.

Language generation is very compelling

• We (GF developers) know the rough edges.

Demonstrated parsing is also very convincing

• Minor typos cause the parse to fail.

Using the parser is quite difficult

© 2013 Galois, Inc. All rights reserved.

How can we relax the parser for

a given concrete language?

© 2013 Galois, Inc. All rights reserved.

Relaxing the parser

1.
• Admit that there will be errors.

2.
• Limit the domain.

3.
• Identify/implement heuristics.

© 2013 Galois, Inc. All rights reserved.

Relaxing the parser

1.
• Admit that there will be errors.

2.
• Fix the domain.

3.
• Identify/implement heuristics.

1.
• May introduce ambiguity.

• Mapping will not be precise.

• Most input should map to some valid string.

• Interact with the user to resolve ambiguity.

 (eg: “Did you mean?” interface)

• Admit that there will be errors.

© 2013 Galois, Inc. All rights reserved.

Relaxing the parser

1.
• Admit that there will be errors.

2.
• Fix the domain.

3.
• Identify/implement heuristics.

• Semantic nuance is often irrelevant.

• The user knows the domain, just not the

syntax.

2.
• Limit the domain.

© 2013 Galois, Inc. All rights reserved.

Relaxing the parser

1.
• Admit that there will be errors.

2.
• Limit the domain.

3.
• Identify/implement heuristics.

• Many heuristics will be similar.

• Heuristics are (probably) reusable.

3.
• Identify/implement heuristics.

© 2013 Galois, Inc. All rights reserved.

Insights

• Eg: Italian gender alignment in Foods.

Concrete syntaxes already add irrelevant details
(compared to abstract syntax)

• synonyms/hyponyms

• Misspellings

• Incorrect case

• Etc…

Accept:

• Account for distortion, fertility, insertion

Leverage SMT techniques

© 2013 Galois, Inc. All rights reserved.

A (more) formal description

Given a grammar 𝐺

• 𝑠. 𝑡. 𝐺 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝐿

Define a grammar transform 𝑡𝑔

• 𝑡𝑔 𝐺 = 𝐺′ 𝑠. 𝑡. 𝐺′𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝐿′

• 𝐿′ ⊇ 𝐿

Define an input transform 𝑡𝑖

• 𝑡𝑖 𝐿′′ ∈ 𝐿′

© 2013 Galois, Inc. All rights reserved.

𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒 𝐺, 𝑟 = 𝑜𝑢𝑡𝑝𝑢𝑡

𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑠𝑡𝑚𝑡 = 𝑟

𝑝𝑎𝑟𝑠𝑒 𝐺′, 𝑖𝑛′ = 𝑠𝑡𝑚𝑡; 𝑠. 𝑡. 𝑠𝑡𝑚𝑡 ∈ 𝐿

𝑡𝑖 𝑖𝑛 = 𝑖𝑛′

𝑟𝑒𝑎𝑑(𝑖𝑛)

© 2013 Galois, Inc. All rights reserved.

Solution? Create a DSL!

© 2013 Galois, Inc. All rights reserved.

Example

transform = do

 trToParser $ do

 addSynonyms [("wine", "vino")

 , ("that", "thar")

 , ("that", "the")

 , ("is", "be")

 , ("is", "are")

]

 addHyponyms [("cheese", "cheddar")

 , ("cheese", "brie")]

 addHypernyms [("cheese", "food")

 , ("cheese", "snack")

 , ("wine", "drink")

 , ("wine", "beverage")]

© 2013 Galois, Inc. All rights reserved.

Example

Foods> p -lang=Eng "that cheddar is warm" | l

that cheese is warm

quel formaggio è caldo

Foods> p -lang=Eng "thar drink be warm" | l

that wine is warm

quel vino è caldo

Foods> p -lang=Eng "thar fresh Italian vino be warm" | l

that fresh Italian wine is warm

quel vino italiano fresco è caldo

© 2013 Galois, Inc. All rights reserved.

DSL Features (in progress)

Modify PGF
𝑡𝑔(𝑝𝑔𝑓)

• addSynonym

• addHyponym

• addTerm

• setProbabilities

Modify a parser (and possibly PGF)
𝑡𝑖(𝑖𝑛𝑝𝑢𝑡)

• matchStems, spellcheck, ignoreCase

• addWordNgram, dropWordNgram

• dropWords, wordsWords

• replaceInput

© 2013 Galois, Inc. All rights reserved.

Ideas/Future work

• It is currently very slow.

Finish Implementation!

• Addresses word-order issues

• “How large is…” vs. “What is the size of…”

• “that wine is warm” vs. “the warm wine is over there”

Map categories between grammars

WordNet / FrameNet (?)

Robust parser

© 2013 Galois, Inc. All rights reserved.

Thanks!

Rogan Creswick

creswick@galois.com

Based in Portland, Oregon

