
Data-Driven Parsing with Discontinuous Structures

Wolfgang Maier

Heinrich-Heine-Universität Düsseldorf

GF Summer School 2013

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Overview

1 Introduction

2 Data-Driven Parsing with Discontinuous Structures
The Data
Parsing
Making it Faster

3 Going Further
Related work
Future work
Extract a grammar yourself

Maier 2/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Overview

1 Introduction

2 Data-Driven Parsing with Discontinuous Structures
The Data
Parsing
Making it Faster

3 Going Further
Related work
Future work
Extract a grammar yourself

Maier 2/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Overview

1 Introduction

2 Data-Driven Parsing with Discontinuous Structures
The Data
Parsing
Making it Faster

3 Going Further
Related work
Future work
Extract a grammar yourself

Maier 2/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Constituency Parsing

Constituency Parsing

Determine whether a sentence is admissible given a specific
grammar, and find the corresponding structure

Different strategies: Top-down/bottom-up,
directional/non-directional, . . .

Non-directional bottom-up (CYK)

S → NP VP
VP → V NP
VP → VP PP
NP → Det N
NP → John
NP → Sandy
NP → Mary
V → sees

. . .

Maier 3/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Constituency Parsing

Constituency Parsing

Determine whether a sentence is admissible given a specific
grammar, and find the corresponding structure

Different strategies: Top-down/bottom-up,
directional/non-directional, . . .

Non-directional bottom-up (CYK)

S → NP VP
VP → V NP
VP → VP PP
NP → Det N
NP → John
NP → Sandy
NP → Mary
V → sees

. . .

John sees Sandy

Maier 3/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Constituency Parsing

Constituency Parsing

Determine whether a sentence is admissible given a specific
grammar, and find the corresponding structure

Different strategies: Top-down/bottom-up,
directional/non-directional, . . .

Non-directional bottom-up (CYK)

S → NP VP
VP → V NP
VP → VP PP
NP → Det N
NP → John
NP → Sandy
NP → Mary
V → sees

. . .

NP V NP

John sees Sandy

Maier 3/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Constituency Parsing

Constituency Parsing

Determine whether a sentence is admissible given a specific
grammar, and find the corresponding structure

Different strategies: Top-down/bottom-up,
directional/non-directional, . . .

Non-directional bottom-up (CYK)

S → NP VP
VP → V NP
VP → VP PP
NP → Det N
NP → John
NP → Sandy
NP → Mary
V → sees

. . .

VP

NP V NP

John sees Sandy

Maier 3/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Constituency Parsing

Constituency Parsing

Determine whether a sentence is admissible given a specific
grammar, and find the corresponding structure

Different strategies: Top-down/bottom-up,
directional/non-directional, . . .

Non-directional bottom-up (CYK)

S → NP VP
VP → V NP
VP → VP PP
NP → Det N
NP → John
NP → Sandy
NP → Mary
V → sees

. . .

S

VP

NP V NP

John sees Sandy

Maier 3/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Data-Driven Constituency Parsing

To make parsing data-driven, instead of writing a grammar by
hand:

use a collection of structures which can be interpreted as
parse trees of the grammar formalism we are using

use an algorithm on it which infers the grammar rules which
have been used to create a given parse tree

equip the rules with probabilities (conditional probabilities
from rule counts)

use probabilities for disambiguation

Maier 4/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Data

Treebanks are

corpora in which sentences are annotated with syntactic
information

very small ones contain a few thousand, large ones up to 100k
sentences

typically created from easily accessible text such as news text

Treebank annotation

mostly aims at neutrality concerning linguistic theories, does
not always succeed

however often has an easily accessible context-free annotation
backbone

Maier 5/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Grammar Extraction Example

S

NP VP

John VP PP

V NP P NP

sees Sandy with Det N

the telescope

S → NP VP

1.0

NP → John

0.333

VP → VP PP

0.5

VP → V NP

0.5

PP → P NP

1.0

V → sees

1.0

NP → Sandy

0.333

P → with

1.0

NP → Det N

0.333

. . .

Maier 6/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Grammar Extraction Example

S

NP VP

John VP PP

V NP P NP

sees Sandy with Det N

the telescope

S → NP VP 1.0
NP → John 0.333
VP → VP PP 0.5
VP → V NP 0.5
PP → P NP 1.0
V → sees 1.0

NP → Sandy 0.333
P → with 1.0

NP → Det N 0.333
. . .

Maier 6/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Discontinuous Structure in Natural Language

A sequence of words which is discontinuous but forms a
linguistically meaningful unit.

. . . ✄✂ �✁ . . . ✄✂ �✁ . . .

Maier 7/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Discontinuous Structure in Natural Language

A sequence of words which is discontinuous but forms a
linguistically meaningful unit.

. . . ✄✂ �✁ . . . ✄✂ �✁ . . .

Maier 7/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Discontinuity

Examples: German

Extraposed relative clauses

(1) wieder
again

treffen
match

alle
all

Attribute
attributes

zu,
Vpart

die
which

auch
also

sonst
otherwise

immer
always

passen
fit

‘Again, the same attributes as always apply.’

Topicalization

(2) Der
The

CD
CD

wird
will

bald
soon

ein
a

Buch
book

folgen
follow

‘The CD will soon be followed by a book.’

Maier 8/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Discontinuity

Examples: German

Extraposed relative clauses

(1) wieder
again

treffen
match

alle
all

Attribute
attributes

zu,
Vpart

die
which

auch
also

sonst
otherwise

immer
always

passen
fit

‘Again, the same attributes as always apply.’

Topicalization

(2) Der
The

CD
CD

wird
will

bald
soon

ein
a

Buch
book

folgen
follow

‘The CD will soon be followed by a book.’

Maier 8/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Discontinuity

Discontinuity is frequent in natural language, not only in languages
with a relatively free word order.

Examples: English

Relative clause

(3) They sow a row of male-fertile plants nearby, which
then pollinate the male-sterile plants.

Long extraction

(4) Those chains include Bloomingdale’s, which Campeau
recently said it will sell.

Maier 9/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Discontinuity

Discontinuity is frequent in natural language, not only in languages
with a relatively free word order.

Examples: English

Relative clause

(3) They sow a row of male-fertile plants nearby, which
then pollinate the male-sterile plants.

Long extraction

(4) Those chains include Bloomingdale’s, which Campeau
recently said it will sell.

Maier 9/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Discontinuity

Discontinuity is frequent in natural language, not only in languages
with a relatively free word order.

Examples: English

Relative clause

(3) They sow a row of male-fertile plants nearby, which
then pollinate the male-sterile plants.

Long extraction

(4) Those chains include Bloomingdale’s, which Campeau
recently said it will sell.

Maier 9/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Annotation in the Penn Treebank

“Movement”: Indirect annotation w/ trace nodes and coindexation

which

WDT

Campeau

NNP

recently

RB

said

VBD

0

-NONE-

it

PRP

will

MD

sell

VB

T

-NONE-

WHNP NP ADVP NP NP

VP

VP

SBJ

S

SBAR

VP

SBJ TMP

S

SBAR

T

Maier 10/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Annotation in the Penn Treebank

“Movement”: Indirect annotation w/ trace nodes and coindexation

which

WDT

Campeau

NNP

recently

RB

said

VBD

0

-NONE-

it

PRP

will

MD

sell

VB

T

-NONE-

WHNP NP ADVP NP NP

VP

VP

SBJ

S

SBAR

VP

SBJ TMP

S

SBAR

T

Maier 10/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Annotation in the German NeGra/TIGER Treebanks

Direct annotation using crossing branches

Der
ART

CD
NN

wird
VAFIN

bald
ADV

ein
ART

Buch
NN

folgen
VVINF

NK NK

NP

DA MO HD

VP

NK NK

NP

OCHD SB

S

Penn-Treebank-style annotation can be converted into this format
[Evang and Kallmeyer, 2011]

Maier 11/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Annotation in the German NeGra/TIGER Treebanks

Direct annotation using crossing branches

Der
ART

CD
NN

wird
VAFIN

bald
ADV

ein
ART

Buch
NN

folgen
VVINF

NK NK

NP

DA MO HD

VP

NK NK

NP

OCHD SB

S

Penn-Treebank-style annotation can be converted into this format
[Evang and Kallmeyer, 2011]

Maier 11/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Annotation in the German NeGra/TIGER Treebanks

Direct annotation using crossing branches

Der
ART

CD
NN

wird
VAFIN

bald
ADV

ein
ART

Buch
NN

folgen
VVINF

NK NK

NP

DA MO HD

VP

NK NK

NP

OCHD SB

S

Penn-Treebank-style annotation can be converted into this format
[Evang and Kallmeyer, 2011]

Maier 11/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Quantifying Discontinuity

Discontinuity measures for constituent structures:

Gap degree

Well-nestedness/Ill-nestedness

Notion of yield

The yield π(v) of a node v in a syntactic structure is the set of
position indices of the terminals dominated by V .

v0

v1 v2

v3 v4

1 2 3

π(v2) = {1, 3}

Maier 12/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Quantifying Discontinuity

Discontinuity measures for constituent structures:

Gap degree

Well-nestedness/Ill-nestedness

Notion of yield

The yield π(v) of a node v in a syntactic structure is the set of
position indices of the terminals dominated by V .

v0

v1 v2

v3 v4

1 2 3

π(v2) = {1, 3}

Maier 12/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Quantifying Discontinuity

Discontinuity measures for constituent structures:

Gap degree

Well-nestedness/Ill-nestedness

Notion of yield

The yield π(v) of a node v in a syntactic structure is the set of
position indices of the terminals dominated by V .

v0

v1 v2

v3 v4

1 2 3

π(v2) = {1, 3}

Maier 12/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Gap Degree

Blocks of a node v : the number of maximal continous
sequences in π(v)

Block degree of v : the number of blocks of v

Gap degree of v + 1 = block degree of v

Maier 13/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Gap Degree Example

Example

v0

v1 v2

v3 v4

1 2 3

set of blocks of v2:

{{1}, {3}}
block degree of v2 = 2

Maier 14/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Gap Degree Example

Example

v0

v1 v2

v3 v4

1 2 3

set of blocks of v2: {{1}, {3}}
block degree of v2

= 2

Maier 14/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Gap Degree Example

Example

v0

v1 v2

v3 v4

1 2 3

set of blocks of v2: {{1}, {3}}
block degree of v2 = 2

Maier 14/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Well-Nestedness

Well-nestedness

There are no disjoint yields π(v1), π(v2) of nodes v1, v2 such that
π(v1), π(v2) interleave.

Example

v0

v1 v2

v3 v4

1 2 3

→ well-nested

Maier 15/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Well-Nestedness

Well-nestedness

There are no disjoint yields π(v1), π(v2) of nodes v1, v2 such that
π(v1), π(v2) interleave.

Example

v0

v1 v2

v3 v4

1 2 3

→ well-nested

Maier 15/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Ill-Nestedness

Example

v0

v1 v2

v3 v4 v5 v6

1 2 3 4

→ 1-ill-nested

k-ill-nestedness

There exist disjoint yields π(v), π(v1), . . . , π(vk) of nodes
v , v1, . . . , vk in a syntactic structure such that π(v1), . . . , π(vk)
interleave with π(v).

Maier 16/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Ill-Nestedness

Example

v0

v1 v2 v7

v3 v4 v5 v8 v6 v9

1 2 3 4 5 6

→ 2-ill-nested

k-ill-nestedness

There exist disjoint yields π(v), π(v1), . . . , π(vk) of nodes
v , v1, . . . , vk in a syntactic structure such that π(v1), . . . , π(vk)
interleave with π(v).

Maier 16/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Empirical Investigation

NeGra TIGER
total 20597 40013
gap degree 0 14,648 72.44% 28,414 71.01%
gap degree 1 5,253 24.23% 10,310 25.77%
gap degree 2 687 3.30% 1,274 3.18%
gap degree 3 9 0.04% 15 0.04%
gap degree ≥4 – – – –
well-nested 20339 98.75% 39573 98.90%
1-ill-nested 258 1.25% 440 1.10%
2-ill-nested – – – –

Maier 17/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

What about Data-Driven Parsing?

Remember

Data-driven parsing requires grammar extraction

However, CFG only supports continuous constituents

No (P)CFG from discontinuous constituents!

Der
ART

CD
NN

wird
VAFIN

bald
ADV

ein
ART

Buch
NN

folgen
VVINF

NK NK

NP

DA MO HD

VP

NK NK

NP

OCHD SB

S

Maier 18/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

What about Data-Driven Parsing?

Remember

Data-driven parsing requires grammar extraction

However, CFG only supports continuous constituents

No (P)CFG from discontinuous constituents!

Der
ART

CD
NN

wird
VAFIN

bald
ADV

ein
ART

Buch
NN

folgen
VVINF

NK NK

NP

DA MO HD

VP

NK NK

NP

OCHD SB

S

Maier 18/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Resolving Crossing Branches (1)

Reattach non-head children of discontinuous nodes

Der
ART

CD
NN

wird
VAFIN

bald
ADV

ein
ART

Buch
NN

folgen
VVINF

NK NK

NP

DA MO

HD

VP

NK NK

NP

OCHD SB

S

Maier 19/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Resolving Crossing Branches (2)

Introduce non-terminals per continuous block [Boyd, 2007]

Der
ART

CD
NN

wird
VAFIN

bald
ADV

ein
ART

Buch
NN

folgen
VVINF

NK NK

NP

DA MO HD

VP*VP*VP*

NK NK

NP

OCOCHD SB

S

OC

Maier 20/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

What now?

Resolving crossing branches discarding annotation

What can we do?

Maier 21/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Constituency trees: GF extraction

S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

cat VP; VAINF;

fun funVP : VP -> VAINF -> VP

lincat VAINF = { p1 : Str };
lincat VP = { p1 : Str ; p2 : Str };
lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

Maier 22/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Constituency trees: GF extraction

S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

cat VP; VAINF;

fun funVP : VP -> VAINF -> VP

lincat VAINF = { p1 : Str };
lincat VP = { p1 : Str ; p2 : Str };
lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

Maier 22/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Constituency trees: GF extraction

S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

cat VP; VAINF;

fun funVP : VP -> VAINF -> VP

lincat VAINF = { p1 : Str };
lincat VP = { p1 : Str ; p2 : Str };
lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

Maier 22/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Constituency trees: GF extraction

S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

cat VP; VAINF;

fun funVP : VP -> VAINF -> VP

lincat VAINF = { p1 : Str };

lincat VP = { p1 : Str ; p2 : Str };
lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

Maier 22/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Constituency trees: GF extraction

S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

cat VP; VAINF;

fun funVP : VP -> VAINF -> VP

lincat VAINF = { p1 : Str };
lincat VP = { p1 : Str ; p2 : Str };

lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

Maier 22/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Constituency trees: GF extraction

S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

cat VP; VAINF;

fun funVP : VP -> VAINF -> VP

lincat VAINF = { p1 : Str };
lincat VP = { p1 : Str ; p2 : Str };
lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

Maier 22/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

From GF to LCFRS

cat VP; VAINF;

fun funVP : VP -> VAINF -> VP

lincat VAINF = { p1 : Str };
lincat VP = { p1 : Str ; p2 : Str };
lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

Omit cat and lincat

Take the fun and add arity given by lincat to cats . . .

. . . and factor in the linearization

Maier 23/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

From GF to LCFRS

cat VP; VAINF;

fun funVP : VP -> VAINF -> VP

lincat VAINF = { p1 : Str };
lincat VP = { p1 : Str ; p2 : Str };
lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

Omit cat and lincat

Take the fun and add arity given by lincat to cats . . .

. . . and factor in the linearization

Maier 23/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

From GF to LCFRS

fun funVP : VP -> VAINF -> VP

lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

Omit cat and lincat

Take the fun and add arity given by lincat to cats . . .

. . . and factor in the linearization

Maier 23/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

From GF to LCFRS

fun funVP : VP -> VAINF -> VP

lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

VP2 → VP2 VAINF1

Omit cat and lincat

Take the fun and add arity given by lincat to cats . . .

. . . and factor in the linearization

Maier 23/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

From GF to LCFRS

fun funVP : VP -> VAINF -> VP

lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

VP2 → VP2 VAINF1

Omit cat and lincat

Take the fun and add arity given by lincat to cats . . .

. . . and factor in the linearization

Maier 23/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

From GF to LCFRS

fun funVP : VP -> VAINF -> VP

lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

VP2(X1,X2X3) → VP2(X1,X2) VAINF(X3)

Omit cat and lincat

Take the fun and add arity given by lincat to cats . . .

. . . and factor in the linearization

Maier 23/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Constituency structure: The LCFRS rules

S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

S1(X1X2X3) → VP2(X1, X3) VMFIN(X2)
VP2(X1, X2X3) → VP2(X1, X2) VAINF(X3)

VP2(X1, X2) → PROAV(X1) VVPP(X2)
Handling of lexicon left out

Maier 24/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Dependency structure

Instead of hierachical constituent structure, use labeled
dependencies between words

Each word has a single head and zero or more dependents

Example: “nachgedacht” is the head of “darüber” and a
dependent of “werden”

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Maier 25/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Dependency structure

Note: Assume extra root node (position 0)

Yield of a word: Set of own position index and all position
indices of words reachable from it

Example: Yield of “werden” is {1, 3, 4}
Gap degree and well-nestedness work here, too; a structure
with gap degree 0 (resp. ≥ 1) is called “projective”
(resp. ”non-projective”)

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Maier 25/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Dependency structures: LCFRS extraction

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Select word, LHS label is head dep. label, RHS labels are POS
tag and dependent dep. labels

Argument of POS tag on RHS is single variable

Argument of other RHS non-terminals: One one-variable
argument per continuous block

Correct concatenation of all introduced variables into
arguments

Maier 26/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Dependency structures: LCFRS extraction

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Select word, LHS label is head dep. label, RHS labels are POS
tag and dependent dep. labels

Argument of POS tag on RHS is single variable

Argument of other RHS non-terminals: One one-variable
argument per continuous block

Correct concatenation of all introduced variables into
arguments

root → aux VMFIN

Maier 26/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Dependency structures: LCFRS extraction

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Select word, LHS label is head dep. label, RHS labels are POS
tag and dependent dep. labels

Argument of POS tag on RHS is single variable

Argument of other RHS non-terminals: One one-variable
argument per continuous block

Correct concatenation of all introduced variables into
arguments

root → aux VMFIN

Maier 26/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Dependency structures: LCFRS extraction

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Select word, LHS label is head dep. label, RHS labels are POS
tag and dependent dep. labels

Argument of POS tag on RHS is single variable

Argument of other RHS non-terminals: One one-variable
argument per continuous block

Correct concatenation of all introduced variables into
arguments

root → aux VMFIN(X)

Maier 26/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Dependency structures: LCFRS extraction

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Select word, LHS label is head dep. label, RHS labels are POS
tag and dependent dep. labels

Argument of POS tag on RHS is single variable

Argument of other RHS non-terminals: One one-variable
argument per continuous block

Correct concatenation of all introduced variables into
arguments

root → aux VMFIN(X)

Maier 26/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Dependency structures: LCFRS extraction

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Select word, LHS label is head dep. label, RHS labels are POS
tag and dependent dep. labels

Argument of POS tag on RHS is single variable

Argument of other RHS non-terminals: One one-variable
argument per continuous block

Correct concatenation of all introduced variables into
arguments

root → aux(X1,X3) VMFIN(X)

Maier 26/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Dependency structures: LCFRS extraction

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Select word, LHS label is head dep. label, RHS labels are POS
tag and dependent dep. labels

Argument of POS tag on RHS is single variable

Argument of other RHS non-terminals: One one-variable
argument per continuous block

Correct concatenation of all introduced variables into
arguments

root → aux(X1,X3) VMFIN(X)

Maier 26/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Dependency structures: LCFRS extraction

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Select word, LHS label is head dep. label, RHS labels are POS
tag and dependent dep. labels

Argument of POS tag on RHS is single variable

Argument of other RHS non-terminals: One one-variable
argument per continuous block

Correct concatenation of all introduced variables into
arguments

root(X1X2X3) → aux(X1,X3) VMFIN(X2)

Maier 26/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Dependency structures: The LCFRS rules

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

pp(X) → PROAV(X)
root(X1X2X3) → aux(X1,X3) VMFIN(X2)

aux(X1,X2) → pp(X1) VVPP(X2)
aux(X1,X2X3) → aux(X1,X2) VAINF(X3)

top(X1) → root(X1)

Maier 27/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Dependency structures: The LCFRS rules

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

pp(X) → PROAV(X)
root(X1X2X3) → aux(X1,X3) VMFIN(X2)

aux(X1,X2) → pp(X1) VVPP(X2)
aux(X1,X2X3) → aux(X1,X2) VAINF(X3)

top(X1) → root(X1)

Maier 27/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Optimization?

Discontinuous constituency trees and non-projective
dependencies directly interpretable as LCFRS derivations

However, treebank grammars do not perform well
[Charniak, 1996]

Luckily proximity to PCFG can be exploited

Maier 28/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Manual label splitting

We have seen before how to extract a grammar

Problem: Some labels are too coarse

Manual splitting using linguistic criteria can help
[Klein and Manning, 2003b, Versley, 2005]

Splits

NP split: To all NP labels, we add their respective
grammatical function label

S relative clauses split: We change the label of all relative
clauses from S to S-RC.

Maier 29/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Manual label splitting

We have seen before how to extract a grammar

Problem: Some labels are too coarse

Manual splitting using linguistic criteria can help
[Klein and Manning, 2003b, Versley, 2005]

Splits

NP split: To all NP labels, we add their respective
grammatical function label

S relative clauses split: We change the label of all relative
clauses from S to S-RC.

Maier 29/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Binarization: CFG CNF

Binarization reduces length of RHSs (rank) to two, lower
complexity for CYK parsing

Leave one non-terminal on the RHS of the original rule and
introduce a unique non-terminal which rewrites to the other
non-terminals

Repeat until all productions have rank 2

Note: with unique non-terminals, binarized grammar is
equivalent to the unbinarized one

A → B C D E
 A → B @1, @1 → C D E
 A → B @1, @1 → C @2, @2 → D E

Maier 30/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Binarization: CFG CNF

Binarization reduces length of RHSs (rank) to two, lower
complexity for CYK parsing

Leave one non-terminal on the RHS of the original rule and
introduce a unique non-terminal which rewrites to the other
non-terminals

Repeat until all productions have rank 2

Note: with unique non-terminals, binarized grammar is
equivalent to the unbinarized one

A → B C D E
 A → B @1, @1 → C D E

 A → B @1, @1 → C @2, @2 → D E

Maier 30/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Binarization: CFG CNF

Binarization reduces length of RHSs (rank) to two, lower
complexity for CYK parsing

Leave one non-terminal on the RHS of the original rule and
introduce a unique non-terminal which rewrites to the other
non-terminals

Repeat until all productions have rank 2

Note: with unique non-terminals, binarized grammar is
equivalent to the unbinarized one

A → B C D E
 A → B @1, @1 → C D E
 A → B @1, @1 → C @2, @2 → D E

Maier 30/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Binarization: CFG CNF

Binarization reduces length of RHSs (rank) to two, lower
complexity for CYK parsing

Leave one non-terminal on the RHS of the original rule and
introduce a unique non-terminal which rewrites to the other
non-terminals

Repeat until all productions have rank 2

Note: with unique non-terminals, binarized grammar is
equivalent to the unbinarized one

A → B C D E
 A → B @1, @1 → C D E
 A → B @1, @1 → C @2, @2 → D E

Maier 30/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Binarization: LCFRS

Works like CFG reduction to Chomsky Normal Form plus
handling of linearization

Different re-orderings of the RHS before binarization give
different binarization techniques from the PCFG literature

Binarizations

Left-to-right: Binarize strictly left-to-right.

Head-outward binarization [Collins, 1999]:

Head marking with Collins-style head-rules
Expand head first, then sisters to the left, then to the right, or
vice versa

Optimal binarization: minimal fan-out and number of
variables per production and binarization step

Maier 31/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Markovization

Generalize grammar by adding markovization

Use a single base binarization non-terminal instead of unique
ones

Information from rule occurrence in treebank added to
binarization non-terminals

Markovization

Markovization information for bin. non-terminal that
comprises original RHS elements Ai . . .Am:

Vertical: First v elements of path from Ai to root
Horizontal: First h elements of Ai . . .A0

Maier 32/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Markovization

Generalize grammar by adding markovization

Use a single base binarization non-terminal instead of unique
ones

Information from rule occurrence in treebank added to
binarization non-terminals

Markovization

Markovization information for bin. non-terminal that
comprises original RHS elements Ai . . .Am:

Vertical: First v elements of path from Ai to root
Horizontal: First h elements of Ai . . .A0

Maier 32/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Training

Eventually, we need a probabilistic grammar.

Training

Count all rule/label occurrences

Estimate probabilities with Maximum Likelihood Estimation

Works as for PCFG, sum of probabilities for rules with same
LHS must be 1

Maier 33/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Training

Eventually, we need a probabilistic grammar.

Training

Count all rule/label occurrences

Estimate probabilities with Maximum Likelihood Estimation

Works as for PCFG, sum of probabilities for rules with same
LHS must be 1

Maier 33/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Example

After extraction and head marking

VP2(X1X2,X3X4)→ ADV 1(X1)VVPP1′(X2)PPER1(X3)ADV 1(X4)
occurring below S1

Binarized

Head-outward binarization, unary top and bottom

Markovization with v = 2, h = 1

VP2(X1,X2)→ @∧VP∧
2 S1-ADV1|2(X1,X2)

@∧VP∧
2 S1-ADV1|2(X1,X2X3)→ @∧VP∧

2 S1-PPER1|2(X1,X2) ADV1(X3)
@∧VP∧

2 S1-PPER1|2(X1,X2)→ @∧VP∧
2 S1-ADV1|1(X1) PPER1(X2)

@∧VP∧
2 S1-ADV1|1(X1,X2)→ ADV1(X1) @∧VP∧

2 S1-VVPP1|1(X2)
@∧VP∧

2 S1-VVPP1|1(X1)→ VVPP1(X1)

Maier 34/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Actual parsing

rparse (http://phil.hhu.de/rparse)

CYK Parser with weighted deductive parsing
[Seki et al., 1991, Nederhof, 2003]

GF (http://www.grammaticalframework.org)

Main difference: left-to-right and prefix valid, means
binarization is done “on-line”

Disco-DOP (http://www.github.com/andreasvc/disco-dop)

Disco-DOP [van Cranenburgh et al., 2011] integrates LCFRS
parsing with Data-Oriented Parsing [Bod and Scha, 1996]

Maier 35/41

http://phil.hhu.de/rparse
http://www.grammaticalframework.org
http://www.github.com/andreasvc/disco-dop

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Qualitative behavior

Constituents: OK

Results lie in the vicinity of results of state-of-the-art PCFG
parsing (plus crossing branches)

Unfortunately no standard test suite for long distance
dependencies yet

Dependencies: Bad

Low results. Possible reasons:

Lack of graph-global features

Unsuitable arc labeling scheme

Maier 36/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Qualitative behavior

Constituents: OK

Results lie in the vicinity of results of state-of-the-art PCFG
parsing (plus crossing branches)

Unfortunately no standard test suite for long distance
dependencies yet

Dependencies: Bad

Low results. Possible reasons:

Lack of graph-global features

Unsuitable arc labeling scheme

Maier 36/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

The Problem

Parsing complexity for binary k-LCFRS: O(n3k).

In practice: PCFG k = 1, PLCFRS k ≥ 4

Too slow already with less than 30 words per sentence

Maier 37/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

The Problem

Parsing complexity for binary k-LCFRS: O(n3k).

In practice: PCFG k = 1, PLCFRS k ≥ 4

Too slow already with less than 30 words per sentence

Maier 37/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

The solutions

Use A∗ search with outside estimates
[Maier and Kallmeyer, 2010]

Improve sorting of partial results such that those are processed
first which more quickly lead to goal

Assuring that k = 2 [Maier et al., 2012]

transformations for treebank trees which preserve discontinuity
information
specialized, much faster parser

Coarse-to-fine [van Cranenburgh, 2012]

build a CFG from LCFRS in which each block gets its own
non-terminal
use CFG chart as filtering stage for LCFRS parsing

Decrease in probability (GF)

Watch decreases in probability when advancing in the sentence

All of these can be combined!

Maier 38/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

The solutions

Use A∗ search with outside estimates
[Maier and Kallmeyer, 2010]

Improve sorting of partial results such that those are processed
first which more quickly lead to goal

Assuring that k = 2 [Maier et al., 2012]

transformations for treebank trees which preserve discontinuity
information
specialized, much faster parser

Coarse-to-fine [van Cranenburgh, 2012]

build a CFG from LCFRS in which each block gets its own
non-terminal
use CFG chart as filtering stage for LCFRS parsing

Decrease in probability (GF)

Watch decreases in probability when advancing in the sentence

All of these can be combined!

Maier 38/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

The solutions

Use A∗ search with outside estimates
[Maier and Kallmeyer, 2010]

Improve sorting of partial results such that those are processed
first which more quickly lead to goal

Assuring that k = 2 [Maier et al., 2012]

transformations for treebank trees which preserve discontinuity
information
specialized, much faster parser

Coarse-to-fine [van Cranenburgh, 2012]

build a CFG from LCFRS in which each block gets its own
non-terminal
use CFG chart as filtering stage for LCFRS parsing

Decrease in probability (GF)

Watch decreases in probability when advancing in the sentence

All of these can be combined!

Maier 38/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

The solutions

Use A∗ search with outside estimates
[Maier and Kallmeyer, 2010]

Improve sorting of partial results such that those are processed
first which more quickly lead to goal

Assuring that k = 2 [Maier et al., 2012]

transformations for treebank trees which preserve discontinuity
information
specialized, much faster parser

Coarse-to-fine [van Cranenburgh, 2012]

build a CFG from LCFRS in which each block gets its own
non-terminal
use CFG chart as filtering stage for LCFRS parsing

Decrease in probability (GF)

Watch decreases in probability when advancing in the sentence

All of these can be combined!

Maier 38/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

The solutions

Use A∗ search with outside estimates
[Maier and Kallmeyer, 2010]

Improve sorting of partial results such that those are processed
first which more quickly lead to goal

Assuring that k = 2 [Maier et al., 2012]

transformations for treebank trees which preserve discontinuity
information
specialized, much faster parser

Coarse-to-fine [van Cranenburgh, 2012]

build a CFG from LCFRS in which each block gets its own
non-terminal
use CFG chart as filtering stage for LCFRS parsing

Decrease in probability (GF)

Watch decreases in probability when advancing in the sentence

All of these can be combined!
Maier 38/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Related work
Future work
Extract a grammar yourself

Related work

Related work aiming at producing parse trees with non-local
information:

Pre-/post-processing of PCFG parses:
[Dienes and Dubey, 2003]: Preprocessing: Inject traces in
parser input (ML)
[Cai et al., 2011]: Preprocessing: Inject traces (Lattice)
[Johnson, 2002]: Postprocessing: Insert traces in
postprocessing

Dependency parsing:
[Hall and Nivre, 2008]: Reconstructing CB via non-projective
dependencies

Formalisms directly encoding discontinuities in derived trees:
[Plaehn, 2004]: First, using Discontinuous Phrase Structure
Grammar (DPSG), up to 15 words
[Levy, 2005]: Comparable setup to rparse, but no results
reported

Maier 39/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Related work
Future work
Extract a grammar yourself

Related work

Related work aiming at producing parse trees with non-local
information:

Pre-/post-processing of PCFG parses:
[Dienes and Dubey, 2003]: Preprocessing: Inject traces in
parser input (ML)
[Cai et al., 2011]: Preprocessing: Inject traces (Lattice)
[Johnson, 2002]: Postprocessing: Insert traces in
postprocessing

Dependency parsing:
[Hall and Nivre, 2008]: Reconstructing CB via non-projective
dependencies

Formalisms directly encoding discontinuities in derived trees:
[Plaehn, 2004]: First, using Discontinuous Phrase Structure
Grammar (DPSG), up to 15 words
[Levy, 2005]: Comparable setup to rparse, but no results
reported

Maier 39/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Related work
Future work
Extract a grammar yourself

Related work

Related work aiming at producing parse trees with non-local
information:

Pre-/post-processing of PCFG parses:
[Dienes and Dubey, 2003]: Preprocessing: Inject traces in
parser input (ML)
[Cai et al., 2011]: Preprocessing: Inject traces (Lattice)
[Johnson, 2002]: Postprocessing: Insert traces in
postprocessing

Dependency parsing:
[Hall and Nivre, 2008]: Reconstructing CB via non-projective
dependencies

Formalisms directly encoding discontinuities in derived trees:
[Plaehn, 2004]: First, using Discontinuous Phrase Structure
Grammar (DPSG), up to 15 words
[Levy, 2005]: Comparable setup to rparse, but no results
reported

Maier 39/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Related work
Future work
Extract a grammar yourself

Related work

Related work aiming at producing parse trees with non-local
information:

Pre-/post-processing of PCFG parses:
[Dienes and Dubey, 2003]: Preprocessing: Inject traces in
parser input (ML)
[Cai et al., 2011]: Preprocessing: Inject traces (Lattice)
[Johnson, 2002]: Postprocessing: Insert traces in
postprocessing

Dependency parsing:
[Hall and Nivre, 2008]: Reconstructing CB via non-projective
dependencies

Formalisms directly encoding discontinuities in derived trees:
[Plaehn, 2004]: First, using Discontinuous Phrase Structure
Grammar (DPSG), up to 15 words
[Levy, 2005]: Comparable setup to rparse, but no results
reported

Maier 39/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Related work
Future work
Extract a grammar yourself

Where to go from here

More improvements from the PCFG world:

LCFRS-LA with automatic category splitting
Approximations of LCFRS parsing (“beam search”) which raise
speed while maintaining output quality

Create more data, e.g. an evaluation suite for discontinuous
structures

Investigate the impact of discontinuous structures in
downstream applications

Maier 40/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Related work
Future work
Extract a grammar yourself

How to get a GF from TIGER

1 Get the TIGER treebank from
http://www.ims.uni-stuttgart.de/forschung/

ressourcen/korpora/tiger.html

2 Get rparse from http://phil.hhu.de/rparse, Compile
rparse using ant

3 Run rparse with
java -jar rparse.jar -doTrain -train [TIGERfile]

-trainIntervals 1-10 -trainSave [output-dir]

-trainSaveFormat gf -trainExtractOnly

4 Check GF files in your output directory

5 Import the concrete syntax into GF

Maier 41/41

http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html
http://phil.hhu.de/rparse
ant

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Related work
Future work
Extract a grammar yourself

Bod, R. and Scha, R. (1996).

Data-oriented language processing: An overview.
Technical Report LP-96-13, Departement of Computational Linguistics, University of Amsterdam,
Amsterdam, The Netherlands.

Boyd, A. (2007).

Discontinuity revisited: An improved conversion to context-free representations.
In Proceedings of The Linguistic Annotation Workshop.

Cai, S., Chiang, D., and Goldberg, Y. (2011).

Language-independent parsing with empty elements.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 212–216, Portland, OR.

Charniak, E. (1996).

Tree-bank grammars.
Technical Report CS-96-02, Brown University.

Collins, M. (1999).

Head-Driven Statistical Models for Natural Language Parsing.
PhD thesis, University of Pennsylvania, Philadelphia, PA.

Dienes, P. and Dubey, A. (2003).

Antecedent recovery: Experiments with a trace tagger.
In Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pages 33–40,
Sapporo, Japan. Association for Computational Linguistics.

Evang, K. and Kallmeyer, L. (2011).

PLCFRS parsing of English discontinuous constituents.
In Proceedings of IWPT.

Gómez-Rodŕıguez, C., Kuhlmann, M., and Satta, G. (2010).

Maier 41/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Related work
Future work
Extract a grammar yourself

Efficient parsing of well-nested Linear Context-Free Rewriting Systems.
In Proceedings of HLT-NAACL.

Hall, J. and Nivre, J. (2008).

Parsing discontinuous phrase structure with grammatical functions.
In Nordström, B. and Ranta, A., editors, Advances in Natural Language Processing, volume 5221 of Lecture
Notes in Computer Science, pages 169–180. Springer, Gothenburg, Sweden.

Johnson, M. (2002).

A simple pattern-matching algorithm for recovering empty nodes and their antecedents.
In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages
136–143, Philadelphia, PA. Association for Computational Linguistics.

Kallmeyer, L. (2010).

Parsing beyond Context-Free Grammar.
Springer.

Kallmeyer, L. and Maier, W. (2010).

Data-driven parsing with Probabilistic Linear Context-Free Rewriting Systems.
In Proceedings of COLING.

Klein, D. and Manning, C. D. (2003a).

A∗ parsing: Fast exact viterbi parse selection.
In Proceedings of NAACL.

Klein, D. and Manning, C. D. (2003b).

Accurate unlexicalized parsing.
In Proceedings of the 41th Annual Meeting of the Association for Computational Linguistics, pages
423–430, Sapporo, Japan. Association for Computational Linguistics.

Levy, R. (2005).

Probabilistic Models of Word Order and Syntactic Discontinuity.

Maier 41/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Related work
Future work
Extract a grammar yourself

PhD thesis, Stanford University.

Maier, W., Kaeshammer, M., and Kallmeyer, L. (2012).

Data-driven plcfrs parsing revisited: Restricting the fan-out to two.
In Proceedings of the Eleventh International Conference on Tree Adjoining Grammars and Related
Formalisms (TAG+11), Paris, France.

Maier, W. and Kallmeyer, L. (2010).

Discontinuity and non-projectivity: Using mildly context-sensitive formalisms for data-driven parsing.
In Proceedings of TAG+10.

Nederhof, M.-J. (2003).

Weighted deductive parsing and Knuth’s algorithm.
Computational Linguistics, 29(1):1–9.

Plaehn, O. (2004).

Computing the most probable parse for a Discontinuous Phrase-Structure Grammar.
In Bunt, H., Carroll, J., and Satta, G., editors, New developments in parsing technology, volume 23 of Text,
Speech And Language Technology, pages 91–106. Kluwer.

Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991).

On Multiple Context-Free Grammars.
Theoretical Computer Science, 88(2):191–229.

van Cranenburgh, A. (2012).

Efficient parsing with linear context-free rewriting systems.
In Proceedings of EACL.

van Cranenburgh, A., Scha, R., and Sangati, F. (2011).

Discontinuous data-oriented parsing: A mildly context-sensitive all-fragments grammar.
In Proceedings of SPMRL.

Maier 41/41

Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

Related work
Future work
Extract a grammar yourself

Versley, Y. (2005).

Parser evaluation across text types.
In Proceedings of TLT.

Maier 41/41

	Introduction
	Data-Driven Parsing with Discontinuous Structures
	The Data
	Parsing
	Making it Faster

	Going Further
	Related work
	Future work
	Extract a grammar yourself

