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Constituency Parsing

Constituency Parsing

Determine whether a sentence is admissible given a specific
grammar, and find the corresponding structure

Different strategies: Top-down/bottom-up,
directional/non-directional, . . .

Non-directional bottom-up (CYK)

S → NP VP
VP → V NP
VP → VP PP
NP → Det N
NP → John
NP → Sandy
NP → Mary
V → sees

. . .
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Data-Driven Constituency Parsing

To make parsing data-driven, instead of writing a grammar by
hand:

use a collection of structures which can be interpreted as
parse trees of the grammar formalism we are using

use an algorithm on it which infers the grammar rules which
have been used to create a given parse tree

equip the rules with probabilities (conditional probabilities
from rule counts)

use probabilities for disambiguation

Maier 4/41
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Data

Treebanks are

corpora in which sentences are annotated with syntactic
information

very small ones contain a few thousand, large ones up to 100k
sentences

typically created from easily accessible text such as news text

Treebank annotation

mostly aims at neutrality concerning linguistic theories, does
not always succeed

however often has an easily accessible context-free annotation
backbone

Maier 5/41
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Grammar Extraction Example

S

NP VP

John VP PP

V NP P NP

sees Sandy with Det N

the telescope

S → NP VP

1.0

NP → John

0.333

VP → VP PP

0.5

VP → V NP

0.5

PP → P NP

1.0

V → sees

1.0

NP → Sandy

0.333

P → with

1.0

NP → Det N

0.333

. . .
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S
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John VP PP

V NP P NP
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the telescope

S → NP VP 1.0
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VP → V NP 0.5
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Discontinuous Structure in Natural Language

A sequence of words which is discontinuous but forms a
linguistically meaningful unit.
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Discontinuity

Examples: German

Extraposed relative clauses

(1) wieder
again

treffen
match

alle
all

Attribute
attributes

zu,
Vpart

die
which

auch
also

sonst
otherwise

immer
always

passen
fit

‘Again, the same attributes as always apply.’

Topicalization

(2) Der
The

CD
CD

wird
will

bald
soon

ein
a

Buch
book

folgen
follow

‘The CD will soon be followed by a book.’

Maier 8/41
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Discontinuity

Discontinuity is frequent in natural language, not only in languages
with a relatively free word order.

Examples: English

Relative clause

(3) They sow a row of male-fertile plants nearby, which
then pollinate the male-sterile plants.

Long extraction

(4) Those chains include Bloomingdale’s, which Campeau
recently said it will sell.

Maier 9/41
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Annotation in the Penn Treebank

“Movement”: Indirect annotation w/ trace nodes and coindexation

which

WDT

Campeau

NNP

recently

RB

said

VBD

0

-NONE-

it

PRP

will

MD

sell

VB

*T*

-NONE-

WHNP NP ADVP NP NP

VP

VP

SBJ

S

SBAR

VP

SBJ TMP

S

SBAR

*T*

Maier 10/41
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Annotation in the German NeGra/TIGER Treebanks

Direct annotation using crossing branches

Der
ART

CD
NN

wird
VAFIN

bald
ADV

ein
ART

Buch
NN

folgen
VVINF

NK NK

NP

DA MO HD

VP

NK NK

NP

OCHD SB

S

Penn-Treebank-style annotation can be converted into this format
[Evang and Kallmeyer, 2011]
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Quantifying Discontinuity

Discontinuity measures for constituent structures:

Gap degree

Well-nestedness/Ill-nestedness

Notion of yield

The yield π(v) of a node v in a syntactic structure is the set of
position indices of the terminals dominated by V .

v0

v1 v2

v3 v4

1 2 3

π(v2) = {1, 3}

Maier 12/41
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Gap Degree

Blocks of a node v : the number of maximal continous
sequences in π(v)

Block degree of v : the number of blocks of v

Gap degree of v + 1 = block degree of v

Maier 13/41



Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Gap Degree Example

Example

v0

v1 v2

v3 v4

1 2 3

set of blocks of v2:

{{1}, {3}}
block degree of v2 = 2

Maier 14/41
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Well-Nestedness

Well-nestedness

There are no disjoint yields π(v1), π(v2) of nodes v1, v2 such that
π(v1), π(v2) interleave.

Example

v0

v1 v2

v3 v4

1 2 3

→ well-nested

Maier 15/41
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Ill-Nestedness

Example

v0

v1 v2

v3 v4 v5 v6

1 2 3 4

→ 1-ill-nested

k-ill-nestedness

There exist disjoint yields π(v), π(v1), . . . , π(vk) of nodes
v , v1, . . . , vk in a syntactic structure such that π(v1), . . . , π(vk)
interleave with π(v).

Maier 16/41
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Ill-Nestedness

Example

v0

v1 v2 v7

v3 v4 v5 v8 v6 v9

1 2 3 4 5 6

→ 2-ill-nested

k-ill-nestedness

There exist disjoint yields π(v), π(v1), . . . , π(vk) of nodes
v , v1, . . . , vk in a syntactic structure such that π(v1), . . . , π(vk)
interleave with π(v).
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Empirical Investigation

NeGra TIGER
total 20597 40013
gap degree 0 14,648 72.44% 28,414 71.01%
gap degree 1 5,253 24.23% 10,310 25.77%
gap degree 2 687 3.30% 1,274 3.18%
gap degree 3 9 0.04% 15 0.04%
gap degree ≥4 – – – –
well-nested 20339 98.75% 39573 98.90%
1-ill-nested 258 1.25% 440 1.10%
2-ill-nested – – – –

Maier 17/41
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What about Data-Driven Parsing?

Remember

Data-driven parsing requires grammar extraction

However, CFG only supports continuous constituents

No (P)CFG from discontinuous constituents!

Der
ART

CD
NN

wird
VAFIN

bald
ADV

ein
ART

Buch
NN

folgen
VVINF

NK NK

NP

DA MO HD

VP

NK NK

NP

OCHD SB

S

Maier 18/41
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Resolving Crossing Branches (1)

Reattach non-head children of discontinuous nodes

Der
ART

CD
NN

wird
VAFIN

bald
ADV

ein
ART

Buch
NN

folgen
VVINF

NK NK

NP

DA MO

HD

VP

NK NK

NP

OCHD SB

S
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Resolving Crossing Branches (2)

Introduce non-terminals per continuous block [Boyd, 2007]

Der
ART

CD
NN

wird
VAFIN

bald
ADV

ein
ART

Buch
NN

folgen
VVINF

NK NK

NP

DA MO HD

VP*VP*VP*

NK NK

NP

OCOCHD SB

S

OC

Maier 20/41
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What now?

Resolving crossing branches  discarding annotation

What can we do?

Maier 21/41
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Constituency trees: GF extraction

S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

cat VP; VAINF;

fun funVP : VP -> VAINF -> VP

lincat VAINF = { p1 : Str };
lincat VP = { p1 : Str ; p2 : Str };
lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

Maier 22/41
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darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

cat VP; VAINF;

fun funVP : VP -> VAINF -> VP

lincat VAINF = { p1 : Str };

lincat VP = { p1 : Str ; p2 : Str };
lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

Maier 22/41



Introduction
Data-Driven Parsing with Discontinuous Structures

Going Further

The Data
Parsing
Making it Faster

Constituency trees: GF extraction

S

VP

VP

PROAV VMFIN VVPP VAINF
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From GF to LCFRS

cat VP; VAINF;

fun funVP : VP -> VAINF -> VP

lincat VAINF = { p1 : Str };
lincat VP = { p1 : Str ; p2 : Str };
lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

Omit cat and lincat

Take the fun and add arity given by lincat to cats . . .

. . . and factor in the linearization

Maier 23/41
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From GF to LCFRS

fun funVP : VP -> VAINF -> VP

lin funVP rhs1 rhs2 rhs3 = { p1 = rhs1.p1; p2 = rhs1.p2 ++ rhs2.p1 };

VP2(X1,X2X3) → VP2(X1,X2) VAINF(X3)

Omit cat and lincat

Take the fun and add arity given by lincat to cats . . .

. . . and factor in the linearization

Maier 23/41
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Constituency structure: The LCFRS rules

S

VP

VP

PROAV VMFIN VVPP VAINF
darüber muß nachgedacht werden
about it must thought be

“It must be thought about it”

S1(X1X2X3) → VP2(X1, X3) VMFIN(X2)
VP2(X1, X2X3) → VP2(X1, X2) VAINF(X3)

VP2(X1, X2) → PROAV(X1) VVPP(X2)
Handling of lexicon left out

Maier 24/41
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Dependency structure

Instead of hierachical constituent structure, use labeled
dependencies between words

Each word has a single head and zero or more dependents

Example: “nachgedacht” is the head of “darüber” and a
dependent of “werden”

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Maier 25/41
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Dependency structure

Note: Assume extra root node (position 0)

Yield of a word: Set of own position index and all position
indices of words reachable from it

Example: Yield of “werden” is {1, 3, 4}
Gap degree and well-nestedness work here, too; a structure
with gap degree 0 (resp. ≥ 1) is called “projective”
(resp. ”non-projective”)

root aux
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r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF
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Dependency structures: LCFRS extraction

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

Select word, LHS label is head dep. label, RHS labels are POS
tag and dependent dep. labels

Argument of POS tag on RHS is single variable

Argument of other RHS non-terminals: One one-variable
argument per continuous block

Correct concatenation of all introduced variables into
arguments
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Dependency structures: The LCFRS rules

root aux
pp aux

r Darüber muß nachgedacht werden
PROAV VMFIN VVPP VAINF

pp(X ) → PROAV(X )
root(X1X2X3) → aux(X1,X3) VMFIN(X2)

aux(X1,X2) → pp(X1) VVPP(X2)
aux(X1,X2X3) → aux(X1,X2) VAINF(X3)

top(X1) → root(X1)
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Optimization?

Discontinuous constituency trees and non-projective
dependencies directly interpretable as LCFRS derivations

However, treebank grammars do not perform well
[Charniak, 1996]

Luckily proximity to PCFG can be exploited
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Manual label splitting

We have seen before how to extract a grammar

Problem: Some labels are too coarse

Manual splitting using linguistic criteria can help
[Klein and Manning, 2003b, Versley, 2005]

Splits

NP split: To all NP labels, we add their respective
grammatical function label

S relative clauses split: We change the label of all relative
clauses from S to S-RC.
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Binarization: CFG CNF

Binarization reduces length of RHSs (rank) to two, lower
complexity for CYK parsing

Leave one non-terminal on the RHS of the original rule and
introduce a unique non-terminal which rewrites to the other
non-terminals

Repeat until all productions have rank 2

Note: with unique non-terminals, binarized grammar is
equivalent to the unbinarized one

A → B C D E
 A → B @1, @1 → C D E
 A → B @1, @1 → C @2, @2 → D E
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Binarization: LCFRS

Works like CFG reduction to Chomsky Normal Form plus
handling of linearization

Different re-orderings of the RHS before binarization give
different binarization techniques from the PCFG literature

Binarizations

Left-to-right: Binarize strictly left-to-right.

Head-outward binarization [Collins, 1999]:

Head marking with Collins-style head-rules
Expand head first, then sisters to the left, then to the right, or
vice versa

Optimal binarization: minimal fan-out and number of
variables per production and binarization step
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Markovization

Generalize grammar by adding markovization

Use a single base binarization non-terminal instead of unique
ones

Information from rule occurrence in treebank added to
binarization non-terminals

Markovization

Markovization information for bin. non-terminal that
comprises original RHS elements Ai . . .Am:

Vertical: First v elements of path from Ai to root
Horizontal: First h elements of Ai . . .A0
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Training

Eventually, we need a probabilistic grammar.

Training

Count all rule/label occurrences

Estimate probabilities with Maximum Likelihood Estimation

Works as for PCFG, sum of probabilities for rules with same
LHS must be 1
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Example

After extraction and head marking

VP2(X1X2,X3X4)→ ADV 1(X1)VVPP1′(X2)PPER1(X3)ADV 1(X4)
occurring below S1

Binarized

Head-outward binarization, unary top and bottom

Markovization with v = 2, h = 1

VP2(X1,X2)→ @∧VP∧
2 S1-ADV1|2(X1,X2)

@∧VP∧
2 S1-ADV1|2(X1,X2X3)→ @∧VP∧

2 S1-PPER1|2(X1,X2) ADV1(X3)
@∧VP∧

2 S1-PPER1|2(X1,X2)→ @∧VP∧
2 S1-ADV1|1(X1) PPER1(X2)

@∧VP∧
2 S1-ADV1|1(X1,X2)→ ADV1(X1) @∧VP∧

2 S1-VVPP1|1(X2)
@∧VP∧

2 S1-VVPP1|1(X1)→ VVPP1(X1)
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Actual parsing

rparse (http://phil.hhu.de/rparse)

CYK Parser with weighted deductive parsing
[Seki et al., 1991, Nederhof, 2003]

GF (http://www.grammaticalframework.org)

Main difference: left-to-right and prefix valid, means
binarization is done “on-line”

Disco-DOP (http://www.github.com/andreasvc/disco-dop)

Disco-DOP [van Cranenburgh et al., 2011] integrates LCFRS
parsing with Data-Oriented Parsing [Bod and Scha, 1996]
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Qualitative behavior

Constituents: OK

Results lie in the vicinity of results of state-of-the-art PCFG
parsing (plus crossing branches)

Unfortunately no standard test suite for long distance
dependencies yet

Dependencies: Bad

Low results. Possible reasons:

Lack of graph-global features

Unsuitable arc labeling scheme
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The Problem

Parsing complexity for binary k-LCFRS: O(n3k).

In practice: PCFG k = 1, PLCFRS k ≥ 4

Too slow already with less than 30 words per sentence
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The solutions

Use A∗ search with outside estimates
[Maier and Kallmeyer, 2010]

Improve sorting of partial results such that those are processed
first which more quickly lead to goal

Assuring that k = 2 [Maier et al., 2012]

transformations for treebank trees which preserve discontinuity
information
specialized, much faster parser

Coarse-to-fine [van Cranenburgh, 2012]

build a CFG from LCFRS in which each block gets its own
non-terminal
use CFG chart as filtering stage for LCFRS parsing

Decrease in probability (GF)

Watch decreases in probability when advancing in the sentence

All of these can be combined!
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Future work
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Related work

Related work aiming at producing parse trees with non-local
information:

Pre-/post-processing of PCFG parses:
[Dienes and Dubey, 2003]: Preprocessing: Inject traces in
parser input (ML)
[Cai et al., 2011]: Preprocessing: Inject traces (Lattice)
[Johnson, 2002]: Postprocessing: Insert traces in
postprocessing

Dependency parsing:
[Hall and Nivre, 2008]: Reconstructing CB via non-projective
dependencies

Formalisms directly encoding discontinuities in derived trees:
[Plaehn, 2004]: First, using Discontinuous Phrase Structure
Grammar (DPSG), up to 15 words
[Levy, 2005]: Comparable setup to rparse, but no results
reported

Maier 39/41
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Related work
Future work
Extract a grammar yourself

Where to go from here

More improvements from the PCFG world:

LCFRS-LA with automatic category splitting
Approximations of LCFRS parsing (“beam search”) which raise
speed while maintaining output quality

Create more data, e.g. an evaluation suite for discontinuous
structures

Investigate the impact of discontinuous structures in
downstream applications
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Related work
Future work
Extract a grammar yourself

How to get a GF from TIGER

1 Get the TIGER treebank from
http://www.ims.uni-stuttgart.de/forschung/

ressourcen/korpora/tiger.html

2 Get rparse from http://phil.hhu.de/rparse, Compile
rparse using ant

3 Run rparse with
java -jar rparse.jar -doTrain -train [TIGERfile]

-trainIntervals 1-10 -trainSave [output-dir]

-trainSaveFormat gf -trainExtractOnly

4 Check GF files in your output directory

5 Import the concrete syntax into GF

Maier 41/41
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