Can We Add Subtyping to GF?

Hans Leiß leiss@cis.uni-muenchen.de

Universität München Centrum für Informations- und Sprachverarbeitung

4th Grammatical Framework Summer School Gozo, July 13–24, 2015

We focus on subtypes in abstract *syntax*, i.e. subtypes in abstract resource grammars rather than application grammars.

GF admits subtypes in concrete grammars, but not in abstract ones.

- Subtypes in concrete grammar: record subtyping
- Subtypes in abstract grammar: do they make much sense?

Content:

- Notions of subtyping, and their use in GF
- Examples with dependent types
- Examples of possible use of subtypes in abstract grammar
- Issues of implementation of subtypes in abstract grammar
- Known complexity results with respect to subtyping

Basic idea of subtypes

The general idea (in object-oriented programming, for example) is:

• if b: B and $B \leq A$, then b: A

If function types $A \rightarrow C$ consist of *total* functions only, this implies

• if $f: A \rightarrow C$ and $b: B \leq A$, then f applies to b, and f(b): C.

In particular, when C = bool:

objects of a subtype $B \le A$ can have all properties that objects of type can A have, and possibly some more.

If the functions are syntactic constructions, this means:

expressions of a category $B \le A$ can be used in every construction where those of category A can be used.

Subtyping for basic objects: subsumption

In a CFG, expression categories X are interpreted as string sets $D_X = L(X)$, so $B \le A \le string$ means $L(B) \subseteq L(A) \subseteq D_{string}$.

Hence: in a CFG,

$$A \rightarrow B_1 \cdots B_n \mid C_1 \cdots C_k$$

amounts to subtype assumptions

$$A \geq B_1 \cdots B_n$$
 and $A \geq C_1 \cdots C_k$

For example, $NP \rightarrow Pron$ resp. $Pron \leq NP$ means: a pronoun can occur whereever a noun phrase can occur.

But: $Pron \leq NP$ isn't really true in German:

 Possessive NP^{gen}-attributes in Det N NP^{gen} must not be Pron's:

(alle) die Werke (des Autors | Goethes | *seiner) Pron's have special possessive forms as determiners: (alle) seine Werke

• Another possessive construction applies (better?) to all NPs: die Werke ((?)von dem Autor | von Goethe | von ihm)

So, Pron $\not\leq$ NP: (Maybe $NP_{P3} \leq Pron_{P3}$.) Likewise $N_{pl}^{gen} \not\leq NP_{pl}^{gen}$:

ein Tag (des Glücks | *Glücks); die Freude (der Fische | *Fische),

A more precise possessive rule were: $NP \rightarrow Det \ N \ (NP-Pron-N)^{gen}$

Coercive subtyping

Subtyping on base domains, like $bool \leq int$ in programming, is uncommon in GF (if it exists at all).

What occurs very often is subtyping via a coercion function,

$$B \leq A \iff D_B \subseteq_c D_A$$
, meaning $c : D_B \to D_A$.

Often, c is injective or even a constructor, such as

UseN : N -> CN ; UsePron : Pron -> NP; ImpVP : VP -> Imp ;

An advantage(?) is that different coersions can cause $B \le A$, as in $\langle from \ Ranta \ 2014 \rangle \equiv$ fun Decl : Cl -> S ; Quest : Cl -> S Subtyping for records: "component omitting" coercion A record type $\rho = \{i : \tau_i \mid i \in I\}$, where $I \subseteq Lab$ is a finite set of labels, is interpreted as the set of all dependent functions

$$D_{\rho} = \{ f : I \rightarrow \bigcup_{i \in I} D_{\tau_i} \mid f(i) \in D_{\tau_i}, 1 \leq i \leq n \}.$$

Write $f \in D_{\rho}$ as $\{i = a_i \mid i \in I, a_i \in D_{\tau_i}\}$ where $a_i = f(i)$.

For record types, subtypes may have additional fields and fields with smaller types

$$\frac{J \supseteq I, \quad \tau_i \le \sigma_i \text{ for all } i \in I}{B := \{j : \tau_j \mid j \in J\} \le \{i : \sigma_i \mid i \in I\} =: A} (rec \le)$$

Here the interpretation D_B is subsumed by D_A via a coercion c

$$B \leq A \iff \{ c(f) \mid f \in D_B \} \subseteq D_A \iff : D_B \subseteq_c D_A$$

where c coerces f by $c_{B,A}(f)(i) = c_{\tau_i,\sigma_i}(f \upharpoonright_I (i))$ for $i \in I$.

Objects of a subtype contain more and more detailed "information".

 $\langle Examples from CatEng.gf \rangle \equiv$ NP = {s : NPCase => Str ; a : Agr} ; Pron = {s : NPCase => Str ; sp : Case => Str ; a : Agr} ; Ord = { s : Case => Str } ; Num = {s : Case => Str ; n : Number ; hasCard : Bool} ; Card = {s : Case => Str ; n : Number} ; $Subj = \{s : Str\};$ Prep = {s : Str; isPre : Bool} ; As record types, this gives

Pron < NP, Num < Card < Ord, Prep < Subj. But, of course, GF does *not* use prepositions as subjunctions etc. Subtyping for functions: $f : (A \rightarrow B) \le (A' \rightarrow B')$ maps all elements of $A \ge A'$ to values of $B \le B'$

If $(A \rightarrow B) = \{ f \mid \forall a : A, f(a) : B \}$ is the set of *total* functions, then \rightarrow is *contravariant* in its argument and *covariant* in the target:

$$\frac{A' \leq A \quad B \leq B'}{(A \rightarrow B) \leq (A' \rightarrow B')} \, (\rightarrow \leq)$$

Expl: In the RGL of GF, V2 = V ** {c2:Case} < V. Hence

- any $f: C \rightarrow V2$ is a $f: C \rightarrow V$
- any g : V → C is a g : V2 → C.
 PassV2 : V2 -> VP is not applicable to arbitrary v:V.

{Example from Verb.gf, using coersive subyping}≡
fun SlashV2a : V2 -> VPSlash ; -- aka V2 < VPSlash
ReflVP : VPSlash -> VP ;

Hence ReflVP is applicable to v2:V2, via (SlashV2a v2).

Record subtyping in GF's concrete grammars

Although GF's concrete syntax has record subtyping, the hidden lock-fields of implementation types block apparent subtypings:

 $\langle Example from CatEng.gf \rangle \equiv$ NP = {s : NPCase => Str ; a : Agr} ; Pron = {s : NPCase => Str ; sp : Case => Str ; a : Agr} ; $\langle Actual \ implementation \ types \ are \ different \rangle \equiv$ Lang> cc -unqual NP {s : NPCase => Str; a : Agr; lock_NP : {}} Lang> cc -unqual Pron {s : NPCase => Str; a : Agr; sp : Case => Str; lock_Pron : {}} Hence, we don't have Pron < NP. Instead, GF uses a coercion UsePron : Pron -> NP to drop fields and adjust the lock-field. $\langle Implementation \ of \ UsePron : Pron -> NP \rangle \equiv$ $p \rightarrow \{s = p.s; a = p.a; lock_NP : \} = <>\}$

 $\langle Example: abstract with coercion function \rangle \equiv$ abstract Subtype = { cat A ; B ; C ; D ;fun b : B ; UseB : $B \rightarrow A$; } $\langle Example: concrete with B < A via coercion \rangle \equiv$ concrete SubtypeConc of Subtype = { lincat $A = \{s:Str; r:C\}$; $B = \{s,t:Str; r:D\}$; $C = \{c:Str\}$; $D = \{c.d:Str\}$; lin b = {s,t = "b"; r = lin D {c = "c"; d = "d"}}; UseB x = lin A {s = x.s; r = x.r}; } (Coercion function, omitting field t and subfield d of field $r \ge 1$ Subtype> cc UseB b {s : Str = "b": r : {c : Str; lock_C : {}} = {c : Str = "c"; d : Str = "d"; lock_D : {} = <>}; $lock A : \{\} = <>\}$

How then is record subtyping used in concrete grammars - without coercion functions?

Functions with record argument and result types are defined as operations, as in

$$\langle From ResEng.gf \rangle \equiv$$

oper

Verb : Type = { s : VForm => Str ; isRefl : Bool } ; VP : Type = { s : VerbForms ; ... } ; predV : Verb -> VP = \verb -> { s = ... ; ... }

Then, different subtypes of Verb are introduced by

 $\langle \textit{From CatEng.gf} \rangle \equiv$

lincat V, VS, VQ, VA = Verb ;

leading to record types Verb ** { lock_V : {} } etc:

 $\langle Implementation types of V, VS, etc. < Verb \rangle \equiv$

- {s : VForm => Str; isRefl : Bool; lock_V : {}}
- {s : VForm => Str; isRefl : Bool; lock_VS : {}}

Finally, as V,VS,VA,VQ < Verb, predV can be applied to all kinds of verbs (without using coercion functions):

 $\langle From \ abstract/Verb.gf \ and \ VerbEng.gf \rangle \equiv data$

UseV : V -> VP; -- sleep ComplVS : VS -> S -> VP; -- say that she runs ComplVQ : VQ -> QS -> VP; -- wonder who runs ComplVA : VA -> AP -> VP; -- they become red lin UseV = predV; ComplVS v s = insertExtra (conjThat ++ s.s) (predV v) ComplVQ v q = insertExtra (q.s ! QIndir) (predV v); ComplVA v ap = insertObj (ap.s) (predV v);

Remark: In the abstract syntax, a *category* Verb does not exist, and V,VS,VQ,VA are just different categories.

Besides the record subtyping, the concrete grammars use coersive subtyping to extend parameter types:

```
⟨from ResGer.gf⟩≡
param
GenNum = GSg Gender | GPl ;
NPForm = NPCase Case | NPPoss GenNum Case ;
in this case making disjoint unions
```

```
D_{GenNum} \simeq D_{Gender} \cup \{PI\},
D_{NPForm} \simeq D_{Case} \cup (D_{GenNum} \times D_{Case})
```

It would sometimes be nice to have simple subsumptions between datatypes, such as

```
⟨fake code⟩≡
subparam Case-Nom < Case ;
fun ReflPron : { s: Case-Nom => Str ; a : Agr } ;
```

Dependent types in the abstract grammar

The abstract grammar of GF has dependent types, but no subtypes. $\langle Type hypothesis \rangle \equiv$ Hyp := $(x : T) | (_ : T) | T$ $(Context) \equiv$ G := | Hyp G $\langle Basic \ category \ declaration \rangle \equiv$ cat C G : A category declaration cat C (x1:T1) ... (xn:Tn) introduces a type constructor

C : T1 -> ... -> Tn -> Type

For a_i : T_i : Type and n > 0, (C a1 ... an) is a dependent type.

```
GF-book, Exercises 6-4*, 6-5*, p.132.
Subject-verb agreement in number could be built into predication:
\langle NumberAgr.gf \rangle \equiv
  abstract NumberAgr =
    cat S ; Number ;
          NP Number : VP Number
    fun Pred : (n:Number) \rightarrow NP n \rightarrow VP n \rightarrow S;
Verb types could be made dependent on subcat-frames (HPSG):
(Subcat.gf) \equiv
  abstract Subcat = {
    cat VSub ; VP ;
          Comps VSub ;
```

```
fun Compl : (sub : VSub) -> V sub -> Comps sub -> VP
```

But: Current RGL does not use dependent types (as far as I know).

Example (Subcat frames)

Aarne Ranta's grammar in "Types and Records for Predication" parameterizes phrase categories by a list of argument types. When combining expressions, the list of argument types is reduced by the type of the argument expression.

(from AR's grammar)≡
 cat Arg ; Args ; V Args ; VP Args ; ...
fun ap, cl, cn, np, qcl, vp : Arg ;
 0 : Args ; c : Arg -> Args -> Args ; -- lists
 UseV : (x:Args) -> V x -> VP x ; -- (simplified)
 ComplNP : (x:Args) -> VP (c np x) -> NP -> VP x ;
 ReflVP : (x:Args) -> VP (c np x) -> VP x ;
 ...

Is this kind of parameterization a substitute to subcategories V $\rm x\,<$ V etc.? The code is simpler than with different categories V_x etc.

Example (Adverbial dimensions)

Different verbs are modifiable in different adverbial dimensions. Let Vs and VPs carry the dimensions in which they can be modified, and when combining with a modifier, remove the dimension at VP.

 $\langle Pseudocode \rangle \equiv$ cat Kind ; fun loc, dir, tmp, instr, mod : Kind cat Adv Kind ; V Kind ; V Kind Kind ; ... VP Kind ; VP Kind Kind ; ... fun here : Adv loc ; later : Adv tmp ; ... live : V loc mod ; -- live nicely in Paris travel : V dir instr ; -- travel to Malta by plane ModVP : (x, y : Kind) -> VP x y -> Adv y -> VP x ; . . .

There is a subcat hierarchy converse to \subseteq on sets of Kind: if $X \subseteq Y \subseteq$ Kind, then (subcat VP Y < VP X) (using c-lists X).

Example (Number restrictions in NPs and VPs)

```
Not only in GF, NPs have inherent number, gender, person. But coordinated NPs actually don't, so GF uses artificial values:
```

As number and person are needed to select the the verb form, such NPs cannot be used as subjects:

```
(du oder wir) *(mußt | müssen) es tun

\mapsto ((du oder wir), jemand<sub>3P,Sg</sub>) muß es tun
```

Also: verbs may demand their subjects (or objects) to be plural; determiners split into mass- vs. individual-det's and create NPs in sg resp. pl. (*many gold, *much days) So, to be precise, we seem to need subcategories:

- NPs with fixed number: NPsg and NPpl, (usable as subject or object, when meeting a possible number constraint of the verb)
- NPs with no definite number: NPnone (usable as object,...)
- VPs constraining the number of its NP-argument: VPpl
- VPs not constraining the number of its NP-argument: VPany

This gives: $VP_{any} \leq VP_{pl}$ and $NP_{sg}, NP_{pl} \leq NP_{none}$.

Or can we do it with dependent types and several predication rules? $\langle from \ DepReciprocals.gf \rangle \equiv$

cat Number ; fun sg, pl, any : Number ; cat NP Number ; V1 Number ; ... ; VP Number ; VPSlash Number Number ; S ; fun agree1 : V1 pl ; -- subject must be pl walk1 : V1 any ; -- subject may be sg or pl agree2 : V2 any any ; -- to agree with sb. mix2 : V2 any pl ; -- object must be pl

```
\langle from \ DepReciprocals.gf 
angle + \equiv
```

```
UseV1 : (n:Number) \rightarrow V1 n \rightarrow VP n ;
PredVP : (n:Number) -> NP n -> VP n -> S ; -- n-agree
PredVPany : (n:Number) \rightarrow NP n \rightarrow VP any \rightarrow S ;
. . .
ComplV3 : (n,m,l:Number) -> V3 n m any -> NP 1
                                       -> VPSlash n m :
-- reciprocal obj reduce VP's arity and enforce pl
Reci2any : VPSlash any any -> VP pl ;
Reci2pl : VPSlash any pl -> VP pl ;
Reci3 : V3 any any any -> VPSlash any pl ;
         -- (I|we) introduce them(pl) to each other
```

Works partly, not precisely, as I misused NP_{any} for NP_{none} . Doable, but clumsy, if we need different kinds KindNP, KindVP and many functions Pred_k1_k2 : NP k1 -> VP k2 -> S. Where could we use subtypes in abstract syntax? Ignoring the possible usefulness of subtypes for *application* grammars – why would we want subtypes in abstract syntax?

Example (Verbs: V0 < V?)

- O-ary verbs admit only impersonal constructions: it rains (heavily) (today)
- grammar rules use suitable kinds of verbs (CG)

Notice: GF's RGB does not separate V0 from V: fun rain_V0 : V
(V0 with (good:) impersonal and (bad:) personal construction)
Lang> parse -cat=Cl "it rains"
ImpersCl (UseV rain_V0)
PredVP (DetNP (DetQuant DefArt NumSg)) (UseV rain_V0)
PredVP (UsePron it_Pron) (UseV rain_V0)

Example (V1 with passives < V1?)

- German intransitive action verbs admit a passive: sie arbeiten – es wird gearbeitet
- other intransitve verbs don't: die Sonne geht auf - *es wird aufgegangen

Likewise for GF's V2: should there be a subtype V2pass < V2? $\langle from \ abstract/Verb.gf \rangle {\equiv}$

- -- *Note*. the rule can be overgenerating, since
- -- the \$V2\$ need not take a direct object. PassV2 : V2 -> VP ; -- be loved

Example (Deponent verbs < V?)

- deponent verbs in Latin and AGreek lack active forms and use passive/middle forms instead (hence have no passive)
- Should we have (subcat Vdep < V)?

Example (Prons and noun phrases: ReflPron < Pron < NP?)

- grammars subsume pronouns under noun phrases, but:
- reflexive and reciprocal pronouns cannot be used as subjects (They | *Themselves) saw the movie (They | *each other) like (apples | each other)

Hence: ReciPron, ReflPron $\not\leq$ Pron. We already saw Pron $\not\leq$ NP.

A. Conclusion so far: For lexical categories, what intuitively may seem to be a subtype B of category A corresponds often to a *subset* of words, lacking some behaviour or having some special behaviour. That is, A = (B + ...) is a disjoint sum with summand B,

$$D_A = D_B \stackrel{.}{\cup} \ldots$$

- If Bs lack some forms other As have, then $B \not\leq A$, but perhaps $A \leq B$. (RelfPron $\not\leq$ Pron < ReflPron, Vdep $\not\leq V < Vdep$)
- If Bs enter special constructions, then $A \not\leq B$. ($V \not\leq V pass$)

B. For phrasal categories, we have seen candidates for \leq

- VPs, VPSlashs having/lacking a plural-constraint (per arg)
- VPs,VPSlashs p.ordered by modifiability in adverb kinds¹
- NPs with/without clear number and person feature.

The last example extends to other categories:

Example (Coordinated Cs < simple Cs?)

If Cs have a governing feature, (C coord C) lacks the feature, if the component Cs disagree on it. So (C coord C) is not usable in every context where C is.

• (ein oder der) (*kleiner|*kleine) Hund

Similar to NP_{none} , we have Det_{strong} , Det_{weak} , $Det_{mixed} < Det_{none}$.

¹Similarly for VPs with alternative complement frames.

Example (Number restrictions, (cont.))

We arrived at: $VP_{any} \leq VP_{pl}$ and $NP_{sg}, NP_{pl} \leq NP_{none}$.

- NPs with fixed number: NPsg and NPpl, (usable when ...)
- NPs with no definite number: NPnone (usable as object,...)
- VPs constraining the number of its NP-argument: VPpl
- VPs not constraining the number of its NP-argument: VPany

Which predication rules do we need to distinguish?

NPnone		VPpl	PredAny: NPsg+NPpl -> VPany -> S	
/	λ		PredPl: NPpl -> VPpl -> S	
NPsg	NPpl	VPany	ComplAny: VP/any -> NPnone -> VP	
			ComplPl : VP/pl -> NPpl -> VP	

How much does the \leq save? Conclusion: Only very flat hierarchies?

Example (SC as subjects - for verbs of suitable kind)

Sentences, questions, infinitival phrases can be used as subjects: $\langle from \ abstract/Sentence.gf, \ with \ coercive \ subtyping \rangle \equiv$ data

EmbedS	: S -> SC ;	that she goes
EmbedQS	: QS -> SC ;	who goes
EmbedVP	: VP -> SC ;	to go
PredSCVP	: SC -> VP -> Cl	; that she goes is good

But each of the three kinds of SC can be subjects of particular verbs only, so the rule PredSCVP is overgenerating. In fact, the semantic domains are fairly different, satisfying a domain equation like

$$D_{SC} \simeq D_S + D_Q + D_{VP}$$
$$\simeq D_t + D_{e^*} + D_{(e \to t)}$$

```
To restrict overgeneration, one ought to have dependent categories:
(categories SC and VP separated into three kinds)≡
  cat Kind ;
  fun sK, qsK, vpK : Kind ;
```

cat SC Kind ; VP Kind ;
fun EmbedS : S -> SC sK ;
EmbedQS : QS -> SC qsK ;
EmbedVP : VP -> SC vpK ;

 $PredSCVP : (k : Kind) \rightarrow SC \ k \rightarrow VP \ k \rightarrow Cl ;$ Of course, (VP k) had to be build from (V k), (V2 k) etc.

The (VP k) are special VPs with SC subject, so (VP k) $\not <$ VP, rather

 $VP \simeq (VP \ sK) + (VP \ qsK) + (VP \ vpK) + (VP \ nom) + \dots$

Subtyping in HPSG

HPSG comes with a hierarchy of sign sorts and constraints on signs. The sort hierarchy is a finite tree (S, \leq) ; its root is \leq -maximal. Each node $\sigma \in S$ in the tree is *partitioned* by it's immediate predecessors $\sigma_1, \ldots, \sigma_n < \sigma$, i.e.

$$D_{\sigma} \simeq D_{\sigma_1} + \ldots + D_{\sigma_n}$$

is the disjoint sum of its immediate subsorts.

HPSG: expletive and referential NPs as subtypes of NP:

 $NP \simeq NP[expl] + NP[ref]$

Then, with subtyping for functions,

$$\frac{NP[expl] < NP}{V\langle NP \rangle := (NP \rightarrow S) < (NP[expl] \rightarrow S) =: V\langle expl \rangle} (\rightarrow \leq)$$

But: does $V\langle NP \rangle < V\langle ref \rangle, V\langle expl \rangle$ mean more than $V\langle NP \rangle = \emptyset$?

Problems with subtyping in the abstract grammar

- P1 Subtype declaration: (cat Pron < NP) versus coersion construction: (UsePron : Pron → NP).
 With subtype declarations we might omit the coersion constructors in abstract syntax trees if they are unique.
 But: if B ≤ A ≤ C and B ≤ A' ≤ C, how to coerce Bs to Cs?
- P2 Which properties of < have to be checked when compiling an abstract grammar with subtype declarations?

Just antisymmetry of the reflexive transitive closure \leq^* ? How expensive is that?

P3 Can an abstract (cat A < B) always be implemented by record subtyping? (And do we have to block the converse? I.e. distinguish (lincat A < B) implementing (cat A < B) from structural record subtyping (independent of abstract <)?</p> P4 Which subtypings (cat A < B) hold for many languages?

Example: Reflexive verbs: language dependent, inherent vs. reflexive use, different forms:

⟨English⟩≡
to enjoy oneself : V[refl] -- obj reflexive
to blow one's nose : V2[refl'] -- poss reflexive
⟨German⟩≡
sich freuen : V[refl] -- inh. reflexive
sich[acc] schneuzen : V[refl] -- inh. reflexive
sich[dat] die Nase putzen : V3[nom,dat,acc]

Example: ACI-verbs are different in different languages (Jpn: only "lassen", many Langs: perception verbs)

Implementing subtypes of abstract syntax

GF has, if all linearization categories are record types:

abstract	concrete	implementation
cat A	lincat $A = \{\ldots\}$	$A = {; lock_A:{}}$

It seems natural to implement subcategory declarations as follows:

abstract	concrete	implementation	
subcat B < A	lincat B < A	B = {; lock_B,lock_A:{}}	

- The implementation type of B would have to collect the lock_A-labels of all (immediate) supercats A > B of B.
- The compiler ought to check that the (subcat B < A)declarations span a partial order < on the categories.
- The reflexive transitive closure <* of < were needed to check applications of lin-functions.

Subtypes for dependent types?

Currently, GF ignores the kind argument k of a dependent category (A k) both in the lincat and in the lock-field for (A k):

abstract	concrete	implementation
cat Kind ;	lincat Kind = {}	Kind = {;lock_Kind:{}}
cat A Kind	lincat A $_$ = {}	$A = \{; lock_A: \{\}\}$

It follows that linearization functions lin f : (A k) \rightarrow C are independent of k.

With subcat, one would probably need lincat A $k = \{..\}$ and lock-fields lock_(A k) depending on k.

Should dependent type constructors be monotone? In which sense?

$$rac{ ext{subcat Kind} < ext{Kind}' \ ; \ ext{cat A Kind}' \ ;}{ ext{cat A Kind} \ ;} \left(ext{cat} <
ight)$$

For (cat <), note that Kind \subseteq_c Kind' is not injective. If c(k1) = c(k2), should A k1 and A k2 be different or equal? Do we by (subcat <) really want

 $\frac{\text{subcat Kind < Kind'; cat A Kind'; fun k:Kind, k':Kind';}{\text{subcat A k < A k'}}$

In the GF-list discussion in March(?) Aarne wanted:

car < vehicle

 $NP \ car < NP \ vehicle$

More generally, for record types ρ , a dependent type constructor $C: \rho \rightarrow Type$ ought to be monotone:

$$rac{r:
ho, \quad t: au, \quad
ho \leq au: extsf{Type}}{ extsf{Cr} \leq extsf{Ct}} \, (extsf{dep} \ \leq)$$

With dependent type constructor $B : A \rightarrow Type$, we can make (ordered) contexts (a : A) (b : B(a)) but not record types $\{a : A, b : B(a)\}$: the set of labels in a record is unordered.

Typability with subtyping

Let Ty be the set of simple types $\sigma, \tau := \iota \mid (\sigma \to \tau)$. Let \leq be a partial order on the set of atomic types ι , extended to \rightarrow -types by

$$\frac{\sigma' \le \sigma \quad \tau \le \tau'}{(\sigma \to \tau) \le (\sigma' \to \tau')} \, (\to \le)$$

Theorem (J.Mitchell) Typability with respect to the typing rules

$$\frac{x:\sigma\in\Gamma}{\Gamma\vdash x:\sigma}(Var)\qquad\frac{\Gamma\vdash t:\tau,\quad\tau\leq\rho}{\Gamma\vdash t:\rho}(Sub)$$

$$\frac{\Gamma, x: \sigma \vdash t: \tau}{\Gamma \vdash \lambda xt: (\sigma \to \tau)} (Abs) \quad \frac{\Gamma \vdash t: (\sigma \to \tau), \quad \Gamma \vdash s: \sigma}{\Gamma \vdash (t \cdot s): \tau} (App)$$

reduces to the subtype satisfiability problem (see below).

Proof idea: Push (Sub) to the leaves of the derivation tree.

Subtype satisfiability problem $SS(\leq)$

Problem

Given a finite set $E \subseteq Ty(Var) \times Ty(Var)$, is there a solution $S : Var \rightarrow Ty$ such that

$$S\sigma \leq S au, \quad ext{for each } (\sigma, au) \in E?$$

For atomic + funcional types:

- Mitchell (1992): $SS(\leq)$ is decidable in NEXPTIME.
- Tiuryn, Wand (1993): $SS(\leq)$ is decidable in DEXPTIME.
- Tiuryn (1992) $SS(\leq)$ is PSPACE hard for $\leq = \int_{0}^{2} \int_{1}^{3}$
- Tiuryn (1992) If \leq is a disjoint union of lattices, then $SS(\leq)$ is in PTIME.
- Benke (1993) If ≤ has the Helley property (generalizes lattices and trees), then SS(≤) is in PTIME.

 Kozen/Palsberg/Schwartzbach (1994) Without ≤ on atomic types, but a largest type ⊤, SS for →-types is in PTIME

Remark: With types \top, \bot , we get "strange" solutions, like $\bot \to \top$.

For object subtyping, having a type $\top = \{\} = \{i : \sigma_i \mid i \in \emptyset\}$, and

$$\frac{I \subseteq J \text{ finite}}{\{i : \sigma_i \mid i \in J\} \le \{i : \sigma_i \mid i \in I\}} (obj \le)$$

Palsberg (1995) SS(≤) for object types is PTIME complete.
 SS(≤) is PTIME equivalent to type reconstruction for OOLs

For record subtyping,

$$\frac{I \subseteq J \text{ finite,} \quad \sigma_i \leq \tau_i \text{ for all } i \in I}{\{i : \sigma_i \mid i \in J\} \leq \{i : \tau_i \mid i \in I\}} (rec \leq)$$

and systems using at least record-types:

- Vorobyov (1998): SS is NP-hard even without atomic types, if we have type constructors → and {i : τ_i,...} (≠ {} = ⊤).
- Vorobyov (1998): SS is NP-hard with a single atomic type and just the {i : τ_i,...} (≠ ⊤) type constructor.
- Vorobyov (1998): SS is NP-hard with the {i : τ_i,...} (≠ ⊤) type constructor and some other type constructor with "structural" subtyping (i.e. comparable types have the same top-level constructor)

Subtype satisfiability for GF?

Is there a SS problem for abstract syntax of GF + subcat? GF can introduce

- atomic types C:Type, via declarations cat C,
- function types Arrow A C : Type, via declarations cat Arrow (_:A) (_:C).

What is or should be intended by a "structural" subtype declaration

cat C A1 \dots An < C B1 \dots Bm

for dependent types? Would it imply m = n and the premise of

$$\frac{A_{1} \leq B_{1}: \textit{Type}, \ \ldots, \ A_{n} \leq B_{n}: \textit{Type}}{C \ A_{1} \ldots A_{n} \leq C \ B_{1} \ldots B_{n}: \textit{Type}} (\textit{dep} \ \leq)$$

Or should any dependent type constructor C be assumed monotone in this sense, without the need of a declaration?

Conclusion ?

We looked at possible uses of subtypes in the abstract syntax and compared them with dependent types for use in resource grammars:

• Using dependent types to split a category C into disjoint parts

 $C \simeq (C \ k_1) + \ldots + (C \ k_n)$

and (if that is possible) split constructions uniformly

$$f:(k:Kind) \rightarrow (C \ k) \rightarrow \ldots \rightarrow D$$

reduces overgeneration and results in parametric code.

• Language-independet subtype relations seem rare, and mainly related to (a) constraints on arguments of constructions $(VP_{any} < VP_{pl})$ (b) limited usability of coordinations due to feature conflics $(NP_{sg} < NP_{none})$. Subcat hierarchies in syntax seem not very deep, so how big is the gain if we have them in the abstract syntax? References:

- 1. L. Cardelli: A Semantics of Multiple Inheritance. Information and Computation 76, p.138-164, 1988.
- J. Tiuryn: Subtype Inequalities. Proc. LICS'92, p.308-315, 1992.
- 3. D. Kozen, J. Palsberg, M. Schwarzbach: Efficient Inference of Partial Types. J. Compt. Syst. Sci. 49, p.306-3024, 1994.
- 4. J. Palsberg: Efficient Inference of Object Types. Information and Computation 123, p. 198-209, 1995.
- S. Vorobyov: Subtyping Functional + Non-Empty Record Types. Proc. CSL 1998.
- A. Ranta: Types and Records for Predication. Proc. EACL Workshop on Type Theory and Natural Language Semantics, p.1-9, 2014.