
Can We Add Subtyping to GF?

Hans Leiÿ
leiss@cis.uni-muenchen.de

Universität München
Centrum für Informations- und Sprachverarbeitung

4th Grammatical Framework Summer School
Gozo, July 13�24, 2015

1 / 42

We focus on subtypes in abstract syntax, i.e. subtypes in abstract
resource grammars rather than application grammars.

GF admits subtypes in concrete grammars, but not in abstract ones.

• Subtypes in concrete grammar: record subtyping

• Subtypes in abstract grammar: do they make much sense?

Content:

• Notions of subtyping, and their use in GF

• Examples with dependent types

• Examples of possible use of subtypes in abstract grammar

• Issues of implementation of subtypes in abstract grammar

• Known complexity results with respect to subtyping

2 / 42

Basic idea of subtypes

The general idea (in object-oriented programming, for example) is:

• if b : B and B ≤ A, then b : A

If function types A→ C consist of total functions only, this implies

• if f : A→ C and b : B ≤ A, then f applies to b, and f (b) : C .

In particular, when C = bool:

objects of a subtype B ≤ A can have all properties that
objects of type can A have, and possibly some more.

If the functions are syntactic constructions, this means:

expressions of a category B ≤ A can be used in every
construction where those of category A can be used.

3 / 42

Subtyping for basic objects: subsumption

In a CFG, expression categories X are interpreted as string sets
DX = L(X), so B ≤ A ≤ string means L(B) ⊆ L(A) ⊆ Dstring .

Hence: in a CFG,

A→ B1 · · ·Bn | C1 · · ·Ck

amounts to subtype assumptions

A ≥ B1 · · ·Bn and A ≥ C1 · · ·Ck

For example, NP→ Pron resp. Pron ≤ NP means: a pronoun can
occur whereever a noun phrase can occur.

4 / 42

But: Pron ≤ NP isn't really true in German:

• Possessive NPgen-attributes in Det N NPgen must not be
Pron's:

(alle) die Werke (des Autors | Goethes | *seiner)

Pron's have special possessive forms as determiners:

(alle) seine Werke

• Another possessive construction applies (better?) to all NPs:

die Werke ((?)von dem Autor | von Goethe | von ihm)

So, Pron 6≤ NP: (Maybe NPP3 ≤ PronP3.) Likewise Ngen
pl 6≤ NPgen

pl :

ein Tag (des Glücks | *Glücks); die Freude (der Fische | *Fische),

A more precise possessive rule were: NP → Det N (NP-Pron-N)gen

5 / 42

Coercive subtyping

Subtyping on base domains, like bool ≤ int in programming, is
uncommon in GF (if it exists at all).

What occurs very often is subtyping via a coercion function,

B ≤ A ⇐⇒ DB ⊆c DA, meaning c : DB → DA.

Often, c is injective or even a constructor, such as

UseN : N -> CN ;

UsePron : Pron -> NP;

ImpVP : VP -> Imp ;

An advantage(?) is that di�erent coersions can cause B ≤ A, as in

〈from Ranta 2014〉≡
fun Decl : Cl -> S ; Quest : Cl -> S

6 / 42

Subtyping for records: �component omitting� coercion

A record type ρ = { i : τi | i ∈ I }, where I ⊆ Lab is a �nite set of
labels, is interpreted as the set of all dependent functions

Dρ = { f : I →
⋃
i∈I

Dτi | f (i) ∈ Dτi , 1 ≤ i ≤ n }.

Write f ∈ Dρ as { i = ai | i ∈ I , ai ∈ Dτi } where ai = f (i).

For record types, subtypes may have additional �elds and �elds
with smaller types

J ⊇ I , τi ≤ σi for all i ∈ I

B := { j : τj | j ∈ J } ≤ { i : σi | i ∈ I } =: A
(rec ≤)

Here the interpretation DB is subsumed by DA via a coercion c

B ≤ A ⇐⇒ { c(f) | f ∈ DB } ⊆ DA ⇐⇒ : DB ⊆c DA

where c coerces f by cB,A(f)(i) = cτi ,σi
(f �I (i)) for i ∈ I .

7 / 42

Objects of a subtype contain more and more detailed �information�.

〈Examples from CatEng.gf 〉≡
NP = {s : NPCase => Str ; a : Agr} ;

Pron = {s : NPCase => Str ; sp : Case => Str ; a : Agr} ;

Ord = { s : Case => Str } ;

Num = {s : Case => Str ; n : Number ; hasCard : Bool} ;

Card = {s : Case => Str ; n : Number} ;

Subj = {s : Str} ;

Prep = {s : Str; isPre : Bool} ;

As record types, this gives

Pron < NP, Num < Card < Ord, Prep < Subj.

But, of course, GF does not use prepositions as subjunctions etc.

8 / 42

Subtyping for functions: f : (A→ B) ≤ (A′ → B ′)

maps all elements of A ≥ A′ to values of B ≤ B ′

If (A→ B) = { f | ∀a : A, f (a) : B } is the set of total functions,
then → is contravariant in its argument and covariant in the target:

A′ ≤ A B ≤ B ′

(A→ B) ≤ (A′ → B ′)
(→ ≤)

Expl: In the RGL of GF, V2 = V ** {c2:Case} < V. Hence

• any f : C → V 2 is a f : C → V

• any g : V → C is a g : V 2→ C .
PassV2 : V2 -> VP is not applicable to arbitrary v:V.

〈Example from Verb.gf, using coersive subyping〉≡
fun SlashV2a : V2 -> VPSlash ; -- aka V2 < VPSlash

ReflVP : VPSlash -> VP ;

Hence ReflVP is applicable to v2:V2, via (SlashV2a v2).
9 / 42

Record subtyping in GF's concrete grammars

Although GF's concrete syntax has record subtyping, the hidden
lock-�elds of implementation types block apparent subtypings:

〈Example from CatEng.gf 〉≡
NP = {s : NPCase => Str ; a : Agr} ;

Pron = {s : NPCase => Str ; sp : Case => Str ; a : Agr} ;

〈Actual implementation types are di�erent〉≡
Lang> cc -unqual NP

{s : NPCase => Str; a : Agr; lock NP : {}}

Lang> cc -unqual Pron

{s : NPCase => Str; a : Agr; sp : Case => Str;

lock Pron : {}}

Hence, we don't have Pron < NP. Instead, GF uses a coercion
UsePron : Pron -> NP to drop �elds and adjust the lock-�eld.

〈Implementation of UsePron : Pron -> NP〉≡
\p -> {s = p.s; a = p.a; lock NP : {} = <>}

10 / 42

〈Example: abstract with coercion function〉≡
abstract Subtype = {

cat A ; B ; C ; D ;

fun b : B ; UseB : B -> A ; }

〈Example: concrete with B < A via coercion〉≡
concrete SubtypeConc of Subtype = {

lincat A = {s:Str; r:C} ; B = {s,t:Str; r:D} ;

C = {c:Str} ; D = {c,d:Str} ;

lin b = {s,t = "b"; r = lin D {c = "c" ; d = "d"}} ;

UseB x = lin A {s = x.s; r = x.r} ; }

〈Coercion function, omitting �eld t and sub�eld d of �eld r〉≡
Subtype> cc UseB b

{s : Str = "b";

r : {c : Str; lock C : {}}

= {c : Str = "c"; d : Str = "d"; lock D : {} = <>};

lock A : {} = <>}

11 / 42

How then is record subtyping used in concrete grammars

� without coercion functions?

Functions with record argument and result types are de�ned as
operations, as in

〈From ResEng.gf 〉≡
oper

Verb : Type = { s : VForm => Str ; isRefl : Bool } ;

VP : Type = { s : VerbForms ; ... } ;

predV : Verb -> VP = \verb -> { s = ... ; ... }

Then, di�erent subtypes of Verb are introduced by

〈From CatEng.gf 〉≡
lincat V, VS, VQ, VA = Verb ;

leading to record types Verb ** { lock V : {} } etc:

〈Implementation types of V, VS, etc. < Verb〉≡
{s : VForm => Str; isRefl : Bool; lock V : {}}

{s : VForm => Str; isRefl : Bool; lock VS : {}}

12 / 42

Finally, as V,VS,VA,VQ < Verb, predV can be applied to all kinds
of verbs (without using coercion functions):

〈From abstract/Verb.gf and VerbEng.gf 〉≡
data

UseV : V -> VP ; -- sleep

ComplVS : VS -> S -> VP ; -- say that she runs

ComplVQ : VQ -> QS -> VP ; -- wonder who runs

ComplVA : VA -> AP -> VP ; -- they become red

lin

UseV = predV ;

ComplVS v s = insertExtra (conjThat ++ s.s) (predV v) ;

ComplVQ v q = insertExtra (q.s ! QIndir) (predV v) ;

ComplVA v ap = insertObj (ap.s) (predV v) ;

Remark: In the abstract syntax, a category Verb does not exist,
and V,VS,VQ,VA are just di�erent categories.

13 / 42

Besides the record subtyping, the concrete grammars use coersive
subtyping to extend parameter types:

〈from ResGer.gf 〉≡
param

GenNum = GSg Gender | GPl ;

NPForm = NPCase Case | NPPoss GenNum Case ;

in this case making disjoint unions

DGenNum ' DGender ∪ {Pl},
DNPForm ' DCase ∪ (DGenNum × DCase)

It would sometimes be nice to have simple subsumptions between
datatypes, such as

〈fake code〉≡
subparam Case-Nom < Case ;

fun ReflPron : { s: Case-Nom => Str ; a : Agr } ;

14 / 42

Dependent types in the abstract grammar

The abstract grammar of GF has dependent types, but no subtypes.

〈Type hypothesis〉≡
Hyp := (x : T) | (: T) | T

〈Context〉≡
G := | Hyp G

〈Basic category declaration〉≡
cat C G ;

A category declaration cat C (x1:T1) ... (xn:Tn) introduces a
type constructor

C : T1 -> ... -> Tn -> Type

For ai : Ti : Type and n > 0, (C a1 ... an) is a dependent type.

15 / 42

GF-book, Exercises 6-4*, 6-5* , p.132.

Subject-verb agreement in number could be built into predication:

〈NumberAgr.gf 〉≡
abstract NumberAgr =

cat S ; Number ;

NP Number ; VP Number

fun Pred : (n:Number) -> NP n -> VP n -> S ;

Verb types could be made dependent on subcat-frames (HPSG):

〈Subcat.gf 〉≡
abstract Subcat = {

cat VSub ; VP ;

Comps VSub ;

fun Compl : (sub : VSub) -> V sub -> Comps sub -> VP

But: Current RGL does not use dependent types (as far as I know).

16 / 42

Example (Subcat frames)

Aarne Ranta's grammar in �Types and Records for Predication�
parameterizes phrase categories by a list of argument types. When
combining expressions, the list of argument types is reduced by the
type of the argument expression.

〈from AR's grammar〉≡
cat Arg ; Args ; V Args ; VP Args ; ...

fun ap, cl, cn, np, qcl, vp : Arg ;

0 : Args ; c : Arg -> Args -> Args ; -- lists

UseV : (x:Args) -> V x -> VP x ; -- (simplified)

ComplNP : (x:Args) -> VP (c np x) -> NP -> VP x ;

ReflVP : (x:Args) -> VP (c np x) -> VP x ;

...

Is this kind of parameterization a substitute to subcategories V x <

V etc.? The code is simpler than with di�erent categories V x etc.

17 / 42

Example (Adverbial dimensions)

Di�erent verbs are modi�able in di�erent adverbial dimensions. Let
Vs and VPs carry the dimensions in which they can be modi�ed,
and when combining with a modi�er, remove the dimension at VP.

〈Pseudocode 〉≡
cat Kind ; fun loc, dir, tmp, instr, mod : Kind

cat Adv Kind ; V Kind ; V Kind Kind ; ...

VP Kind ; VP Kind Kind ; ...

fun here : Adv loc ; later : Adv tmp ; ...

live : V loc mod ; -- live nicely in Paris

travel : V dir instr ; -- travel to Malta by plane

ModVP : (x, y : Kind) -> VP x y -> Adv y -> VP x ;

...

There is a subcat hierarchy converse to ⊆ on sets of Kind: if
X ⊆ Y ⊆ Kind, then (subcat VP Y < VP X) (using c-lists X).

18 / 42

Example (Number restrictions in NPs and VPs)

Not only in GF, NPs have inherent number, gender, person. But
coordinated NPs actually don't, so GF uses arti�cial values:

〈agreement values of "du oder wir"〉≡
Lang> cc -unqual (ConjNP or Conj

(BaseNP (UsePron youSg Pron)

(UsePron we Pron))).a

Ag Fem Pl P1

As number and person are needed to select the the verb form, such
NPs cannot be used as subjects:

(du oder wir) *(muÿt | müssen) es tun
7→ ((du oder wir), jemand3P,Sg) muÿ es tun

Also: verbs may demand their subjects (or objects) to be plural;
determiners split into mass- vs. individual-det's and create NPs in
sg resp. pl. (*many gold, *much days) 19 / 42

So, to be precise, we seem to need subcategories:

• NPs with �xed number: NPsg and NPpl, (usable as subject or
object, when meeting a possible number constraint of the verb)

• NPs with no de�nite number: NPnone (usable as object,. . .)
• VPs constraining the number of its NP-argument: VPpl
• VPs not constraining the number of its NP-argument: VPany

This gives: VPany ≤ VPpl and NPsg ,NPpl ≤ NPnone .

Or can we do it with dependent types and several predication rules?

〈from DepReciprocals.gf 〉≡
cat Number ; fun sg, pl, any : Number ;

cat NP Number ; V1 Number ; ... ; VP Number ;

VPSlash Number Number ; S ;

fun agree1 : V1 pl ; -- subject must be pl

walk1 : V1 any ; -- subject may be sg or pl

agree2 : V2 any any ; -- to agree with sb.

mix2 : V2 any pl ; -- object must be pl

20 / 42

〈from DepReciprocals.gf 〉+≡
UseV1 : (n:Number) -> V1 n -> VP n ;

PredVP : (n:Number) -> NP n -> VP n -> S ; -- n-agree

PredVPany : (n:Number) -> NP n -> VP any -> S ;

...

ComplV3 : (n,m,l:Number) -> V3 n m any -> NP l

-> VPSlash n m ;

-- reciprocal obj reduce VP’s arity and enforce pl

Reci2any : VPSlash any any -> VP pl ;

Reci2pl : VPSlash any pl -> VP pl ;

Reci3 : V3 any any any -> VPSlash any pl ;

-- (I|we) introduce them(pl) to each other

Works partly, not precisely, as I misused NPany for NPnone .

Doable, but clumsy, if we need di�erent kinds KindNP, KindVP and
many functions Pred k1 k2 : NP k1 -> VP k2 -> S.

21 / 42

Where could we use subtypes in abstract syntax?

Ignoring the possible usefulness of subtypes for application
grammars � why would we want subtypes in abstract syntax?

Example (Verbs: V0 < V?)

• 0-ary verbs admit only impersonal constructions:
it rains (heavily) (today)

• grammar rules use suitable kinds of verbs (CG)

Notice: GF's RGB does not separate V0 from V: fun rain V0 : V

〈V0 with (good:) impersonal and (bad:) personal construction〉≡
Lang> parse -cat=Cl "it rains"

ImpersCl (UseV rain V0)

PredVP (DetNP (DetQuant DefArt NumSg)) (UseV rain V0)

PredVP (UsePron it Pron) (UseV rain V0)

22 / 42

Example (V1 with passives < V1?)

• German intransitive action verbs admit a passive:
sie arbeiten � es wird gearbeitet

• other intransitve verbs don't:
die Sonne geht auf � *es wird aufgegangen

Likewise for GF's V2: should there be a subtype V2pass < V2?

〈from abstract/Verb.gf 〉≡
-- *Note*. the rule can be overgenerating, since

-- the $V2$ need not take a direct object.

PassV2 : V2 -> VP ; -- be loved

Example (Deponent verbs < V?)

• deponent verbs in Latin and AGreek lack active forms and use
passive/middle forms instead (hence have no passive)

• Should we have (subcat Vdep < V)?
23 / 42

Example (Prons and noun phrases: Re�Pron < Pron < NP?)

• grammars subsume pronouns under noun phrases, but:

• re�exive and reciprocal pronouns cannot be used as subjects
(They | *Themselves) saw the movie

(They | *each other) like (apples | each other)

Hence: ReciPron,ReflPron 6≤ Pron. We already saw Pron 6≤ NP.

A. Conclusion so far: For lexical categories, what intuitively may
seem to be a subtype B of category A corresponds often to a subset
of words, lacking some behaviour or having some special behaviour.
That is, A = (B + . . .) is a disjoint sum with summand B ,

DA = DB ∪̇ . . .

• If Bs lack some forms other As have, then B 6≤ A, but perhaps
A ≤ B . (RelfPron 6≤ Pron < Re�Pron, Vdep 6≤ V < Vdep)

• If Bs enter special constructions, then A 6≤ B . (V 6≤ Vpass)
24 / 42

B. For phrasal categories, we have seen candidates for ≤

• VPs, VPSlashs having/lacking a plural-constraint (per arg)

• VPs,VPSlashs p.ordered by modi�ability in adverb kinds1

• NPs with/without clear number and person feature.

The last example extends to other categories:

Example (Coordinated Cs < simple Cs?)

If Cs have a governing feature, (C coord C) lacks the feature, if
the component Cs disagree on it. So (C coord C) is not usable in
every context where C is.

• (ein oder der) (*kleiner|*kleine) Hund

Similar to NPnone , we have Detstrong ,Detweak ,Detmixed < Detnone .

1Similarly for VPs with alternative complement frames.
25 / 42

Example (Number restrictions, (cont.))

We arrived at: VPany ≤ VPpl and NPsg ,NPpl ≤ NPnone .

• NPs with �xed number: NPsg and NPpl, (usable when ...)

• NPs with no de�nite number: NPnone (usable as object,. . .)

• VPs constraining the number of its NP-argument: VPpl

• VPs not constraining the number of its NP-argument: VPany

Which predication rules do we need to distinguish?

NPnone VPpl PredAny: NPsg+NPpl -> VPany -> S

/ \ | PredPl: NPpl -> VPpl -> S

NPsg NPpl VPany ComplAny: VP/any -> NPnone -> VP

ComplPl : VP/pl -> NPpl -> VP

How much does the ≤ save? Conclusion: Only very �at hierarchies?

26 / 42

Example (SC as subjects � for verbs of suitable kind)

Sentences, questions, in�nitival phrases can be used as subjects:

〈from abstract/Sentence.gf, with coercive subtyping〉≡
data

EmbedS : S -> SC ; -- that she goes

EmbedQS : QS -> SC ; -- who goes

EmbedVP : VP -> SC ; -- to go

PredSCVP : SC -> VP -> Cl ; -- that she goes is good

But each of the three kinds of SC can be subjects of particular verbs
only, so the rule PredSCVP is overgenerating. In fact, the semantic
domains are fairly di�erent, satisfying a domain equation like

DSC ' DS + DQ + DVP

' Dt + De∗ + D(e→t)

27 / 42

To restrict overgeneration, one ought to have dependent categories:

〈categories SC and VP separated into three kinds〉≡
cat Kind ;

fun sK, qsK, vpK : Kind ;

cat SC Kind ; VP Kind ;

fun EmbedS : S -> SC sK ;

EmbedQS : QS -> SC qsK ;

EmbedVP : VP -> SC vpK ;

PredSCVP : (k : Kind) -> SC k -> VP k -> Cl ;

Of course, (VP k) had to be build from (V k), (V2 k) etc.

The (VP k) are special VPs with SC subject, so (VP k) 6< VP, rather

VP ' (VP sK) + (VP qsK) + (VP vpK) + (VP nom) + . . .

28 / 42

Subtyping in HPSG

HPSG comes with a hierarchy of sign sorts and constraints on signs.

The sort hierarchy is a �nite tree (S ,≤); its root is ≤-maximal.
Each node σ ∈ S in the tree is partitioned by it's immediate
predecessors σ1, . . . , σn < σ, i.e.

Dσ ' Dσ1 + . . .+ Dσn

is the disjoint sum of its immediate subsorts.

HPSG: expletive and referential NPs as subtypes of NP:

NP ' NP[expl] + NP[ref]

Then, with subtyping for functions,

NP[expl] < NP

V 〈NP〉 := (NP → S) < (NP[expl]→ S) =: V 〈expl〉
(→≤)

But: does V 〈NP〉 < V 〈ref 〉,V 〈expl〉 mean more than V 〈NP〉 = ∅?
29 / 42

Problems with subtyping in the abstract grammar

P1 Subtype declaration: (cat Pron < NP) versus
coersion construction: (UsePron : Pron -> NP).

With subtype declarations we might omit the coersion
constructors in abstract syntax trees � if they are unique.

But: if B ≤ A ≤ C and B ≤ A′ ≤ C , how to coerce Bs to C s?

P2 Which properties of < have to be checked when compiling an
abstract grammar with subtype declarations?

Just antisymmetry of the re�exive transitive closure ≤∗?
How expensive is that?

P3 Can an abstract (cat A < B) always be implemented by
record subtyping? (And do we have to block the converse? I.e.
distinguish (lincat A < B) implementing (cat A < B)

from structural record subtyping (independent of abstract <)?

30 / 42

P4 Which subtypings (cat A < B) hold for many languages?

Example: Re�exive verbs: language dependent, inherent vs.
re�exive use, di�erent forms:

〈English〉≡
to enjoy oneself : V[refl] -- obj reflexive

to blow one’s nose : V2[refl’] -- poss reflexive

〈German〉≡
sich freuen : V[refl] -- inh. reflexive

sich[acc] schneuzen : V[refl] -- inh. reflexive

sich[dat] die Nase putzen : V3[nom,dat,acc]

Example: ACI-verbs are di�erent in di�erent languages (Jpn:
only �lassen�, many Langs: perception verbs)

31 / 42

Implementing subtypes of abstract syntax

GF has, if all linearization categories are record types:

abstract concrete implementation

cat A lincat A = {...} A = {...; lock_A:{}}

It seems natural to implement subcategory declarations as follows:

abstract concrete implementation

subcat B < A lincat B < A B = {...; lock_B,lock_A:{}}

• The implementation type of B would have to collect the
lock_A-labels of all (immediate) supercats A > B of B.

• The compiler ought to check that the (subcat B < A)-
declarations span a partial order < on the categories.

• The re�exive transitive closure <∗ of < were needed to check
applications of lin-functions.

32 / 42

Subtypes for dependent types?

Currently, GF ignores the kind argument k of a dependent category
(A k) both in the lincat and in the lock-�eld for (A k):

abstract concrete implementation

cat Kind ; lincat Kind = {...} Kind = {...;lock_Kind:{}}

cat A Kind lincat A _ = {...} A = {...; lock_A:{}}

It follows that linearization functions lin f : (A k) -> C are
independent of k.

With subcat, one would probably need lincat A k = {..} and
lock-�elds lock (A k) depending on k.

33 / 42

Should dependent type constructors be monotone? In which sense?

subcat Kind < Kind' ; cat A Kind' ;

cat A Kind ;
(cat <)

subcat Kind < Kind' ; cat A Kind'

subcat (A Kind) < (A Kind')
(subcat <)

For (cat <), note that Kind ⊆c Kind
′ is not injective. If

c(k1) = c(k2), should A k1 and A k2 be di�erent or equal?

Do we by (subcat <) really want

subcat Kind < Kind' ; cat A Kind' ; fun k:Kind, k':Kind' ;

subcat A k < A k'
?

34 / 42

In the GF-list discussion in March(?) Aarne wanted:

car < vehicle

NP car < NP vehicle

More generally, for record types ρ, a dependent type constructor
C : ρ→ Type ought to be monotone:

r : ρ, t : τ, ρ ≤ τ : Type

Cr ≤ Ct
(dep ≤)

With dependent type constructor B : A→ Type, we can make
(ordered) contexts (a : A) (b : B(a)) but not record types
{a : A, b : B(a)}: the set of labels in a record is unordered.

35 / 42

Typability with subtyping
Let Ty be the set of simple types σ, τ := ι | (σ → τ). Let ≤ be a
partial order on the set of atomic types ι, extended to →-types by

σ′ ≤ σ τ ≤ τ ′

(σ → τ) ≤ (σ′ → τ ′)
(→ ≤)

Theorem (J.Mitchell) Typability with respect to the typing rules

x : σ ∈ Γ

Γ ` x : σ
(Var)

Γ ` t : τ, τ ≤ ρ
Γ ` t : ρ

(Sub)

Γ, x : σ ` t : τ

Γ ` λxt : (σ → τ)
(Abs)

Γ ` t : (σ → τ), Γ ` s : σ

Γ ` (t · s) : τ
(App)

reduces to the subtype satis�ability problem (see below).

Proof idea: Push (Sub) to the leaves of the derivation tree.
36 / 42

Subtype satis�ability problem SS(≤)
Problem

Given a �nite set E ⊆ Ty(Var)× Ty(Var), is there a
solution S : Var → Ty such that

Sσ ≤ Sτ, for each (σ, τ) ∈ E?

For atomic + funcional types:

• Mitchell (1992): SS(≤) is decidable in NEXPTIME.
• Tiuryn, Wand (1993): SS(≤) is decidable in DEXPTIME.

• Tiuryn (1992) SS(≤) is PSPACE hard for ≤ =
2 3
��HH

0 1

• Tiuryn (1992) If ≤ is a disjoint union of lattices, then SS(≤)
is in PTIME.

• Benke (1993) If ≤ has the Helley property (generalizes lattices
and trees), then SS(≤) is in PTIME.

37 / 42

• Kozen/Palsberg/Schwartzbach (1994) Without ≤ on atomic
types, but a largest type >, SS for →-types is in PTIME

Remark: With types >,⊥, we get �strange� solutions, like ⊥ → >.

For object subtyping, having a type > = {} = { i : σi | i ∈ ∅ }, and

I ⊆ J �nite

{ i : σi | i ∈ J } ≤ { i : σi | i ∈ I }
(obj ≤)

• Palsberg (1995) SS(≤) for object types is PTIME complete.
SS(≤) is PTIME equivalent to type reconstruction for OOLs

38 / 42

For record subtyping,

I ⊆ J �nite, σi ≤ τi for all i ∈ I

{ i : σi | i ∈ J } ≤ { i : τi | i ∈ I }
(rec ≤)

and systems using at least record-types:

• Vorobyov (1998): SS is NP-hard even without atomic types, if
we have type constructors → and {i : τi , . . .} (6= {} = >).

• Vorobyov (1998): SS is NP-hard with a single atomic type and
just the {i : τi , . . .} (6= >) type constructor.

• Vorobyov (1998): SS is NP-hard with the {i : τi , . . .} (6= >)
type constructor and some other type constructor with
�structural� subtyping (i.e. comparable types have the same
top-level constructor)

39 / 42

Subtype satis�ability for GF?

Is there a SS problem for abstract syntax of GF + subcat?

GF can introduce

• atomic types C:Type, via declarations cat C,

• function types Arrow A C : Type, via declarations cat
Arrow (:A) (:C).

What is or should be intended by a �structural� subtype declaration

cat C A1 ... An < C B1 ... Bm

for dependent types? Would it imply m = n and the premise of

A1 ≤ B1 : Type, . . . , An ≤ Bn : Type

C A1 . . .An ≤ C B1 . . .Bn : Type
(dep ≤)

Or should any dependent type constructor C be assumed monotone
in this sense, without the need of a declaration?

40 / 42

Conclusion ?
We looked at possible uses of subtypes in the abstract syntax and
compared them with dependent types for use in resource grammars:

• Using dependent types to split a category C into disjoint parts

C ' (C k1) + . . .+ (C kn)

and (if that is possible) split constructions uniformly

f : (k : Kind)→ (C k)→ . . .→ D

reduces overgeneration and results in parametric code.

• Language-independet subtype relations seem rare, and mainly
related to (a) constraints on arguments of constructions
(VPany < VPpl) (b) limited usability of coordinations due to
feature con�ics (NPsg < NPnone).
Subcat hierarchies in syntax seem not very deep, so how big is
the gain if we have them in the abstract syntax?

41 / 42

References:

1. L. Cardelli: A Semantics of Multiple Inheritance. Information
and Computation 76, p.138-164, 1988.

2. J. Tiuryn: Subtype Inequalities. Proc. LICS'92, p.308-315,
1992.

3. D. Kozen, J. Palsberg, M. Schwarzbach: E�cient Inference of
Partial Types. J. Compt. Syst. Sci. 49, p.306-3024, 1994.

4. J. Palsberg: E�cient Inference of Object Types. Information
and Computation 123, p. 198-209, 1995.

5. S. Vorobyov: Subtyping Functional + Non-Empty Record
Types. Proc. CSL 1998.

6. A. Ranta: Types and Records for Predication. Proc. EACL
Workshop on Type Theory and Natural Language Semantics,
p.1-9, 2014.

42 / 42

