
A Multilingual FrameNet-based Grammar
and Lexicon for Controlled Natural Language

Formalising the Swedish Constructicon in GF

Normunds Grūzītis

University of Gothenburg, Department of Computer Science and Engineering

University of Latvia, Institute of Mathematics and Computer Science

4th GF Summer School
Gozo, Malta, 13–24 July 2015

• FrameNet

– Aim and background

– Extraction of semantico-syntactic verb valence patterns from
FrameNet-annotated corpora

– Generation of a FrameNet-based GF grammar and lexicon

– Case study

– Results

• Constructicon

– Aim and background

– Conversion of SweCcn into GF

– Results

Agenda

FrameNet (FN)

• A lexico-semantic resource based on the theory of frame
semantics (Fillmore et al. 2003)

– A semantic frame represents a cognitive, prototypical situation
(scenario) characterized by frame elements (FE) – semantic valence

– Frames are “evoked” in sentences by target words – lexical units (LU)

– FEs are mapped based on the syntactic valence of the LU

• The syntactic valence patterns are derived from FN-annotated corpora
(for an increasing number of languages)

– FEs are split into core and non-core ones

• Core FEs uniquely characterize the frame and syntactically tend to
correspond to verb arguments

• Non-core FEs are not specific to the frame and typically are adjuncts

BFN and SweFN

• Our experiment is based on two FNs: the original Berkeley
FrameNet (BFN) and the Swedish FrameNet (SweFN)

– We consider only those frames for which there is at least one corpus
example where the frame is evoked by a verb

• BFN 1.5 (2010) defines 1,020 frames of which 559 are evoked
by 3,254 verb LUs in 69,260 annotated sentences

• A SweFN development version (Dec 2014) covers 995 frames
of which 660 are evoked by 2,887 verb LUs in 4,400 sentences

• SweFN, like many other FNs, mostly reuses BFN frames,
hence, BFN frames can be seen as a semantic interlingua

– A linguistically motivated ontology

Example frame

want.v..6412 känna_för.vb..1

Introduced in BFN, reused in SweFN

e.g. “[I]Experiencer do n't WANT [to deceive anyone]Event”
 |
 an embedded frame

Some valence patterns found in SweFN Some valence patterns found in BFN

e.g. “[Jag]Experiencer KÄNNER FÖR [en tur på
landet]Focal_participant”

FrameNet and GF

• Existing FNs are not entirely formal and computational

– We provide a limited but computational FN-based grammar and lexicon

• Grammatical Framework:

– Separates between an abstract syntax and concrete syntaxes

– Provides a general-purpose resource grammar library (RGL)

• Large mono- and multilingual lexicons (for an increasing number of languages)

• The language-independent layer of FrameNet (frames and FEs) –
the abstract syntax

– The language-specific layers (surface realization of frames and FEs; LUs) –
concrete syntaxes

• RGL can be used for unifying the syntactic types used in different
FNs and for the concrete implementation of frames

– FrameNet allows for abstracting over RGL

Relation to CNL

• Kuhn (2014) defines Controlled Natural Language (CNL) as “a
constructed language that is based on a certain natural language,
being more restrictive concerning lexicon, syntax, and/or semantics,
while preserving most of its natural properties”

• We deviate from this definition in two aspects:

– Our intention is to produce a reusable grammar that covers a restricted subset
of NL instead of a grammar of a predefined constructed language

– We produce a currently bilingual but potentially multilingual grammar library
which is therefore not based on exactly one NL but inherently has a shared
semantic abstract syntax

• Thus, we do not provide a CNL as such but a high-level API for the
facilitation of the development of CNL grammars, making them
more flexible – easier to modify and extend

• In a sense, we aim at bridging the gap between CNL and NL

Specific aim (1)

• Provide a semantic API on top of RGL to facilitate the development
of GF application grammars

– In combination with the syntactic API of RGL

– Hiding the comparatively complex construction of verb phrases

mkCl person (mkVP (mkVP live_V) (mkAdv in_Prep place))
 -- mkCl : NP -> VP -> Cl
 -- mkVP : V -> VP
 -- mkVP : VP -> Adv -> VP
 -- mkAdv : Prep -> NP -> Adv

Residence -- Residence : NP -> Adv -> V -> Cl
 person -- NP (Resident)
 (mkAdv in_Prep place) -- Adv (Location)
 live_V_Residence -- V (LU)

Specific aim (2)

• FN-annotated knowledge bases multilingual verbalization

Imants Ziedonis ir dzimis 1933. gada 3. maijā Slokas pagastā.
Imants Ziedonis was born in Sloka parish on 3 May 1933.

Outline

Extraction of frame valence patterns

• Valence patterns that are shared between FNs (currently, BFN and SweFN)

– Multilingual applications

– Cross-lingual validation

• Currently, only core FEs that make the frames unique

• Example: some shared patterns of the frame Desiring

– Desiring/VAct Experiencer/NPSubj Focal_participant/Adv
e.g., [Dexter]Experiencer [YEARNED] [for a cigarette]Focal_participant

– Desiring/V2Act Experiencer/NPSubj Focal_participant/NPDObj

e.g., [she]Experiencer [WANTS] [a protector]Focal_participant

– Desiring/VVAct Event/VP Experiencer/NPSubj

e.g., [I]Experiencer would n’t [WANT] [to know]Event

• The uniform patterns contain sufficient info for generating the grammar

1. Language- and FN-specific processing
<sentence ID="732945">
 <text>Traders in the city want a change.</text>
 <annotationSet><layer rank="1" name="BNC">
 <label start="0" end="6" name="NP0"/>
 <label start="20" end="23" name="VVB"/>
 <label start="25" end="25" name="AT0"/>
 </layer></annotationSet>
 <annotationSet status="MANUAL">
 <layer rank="1" name="FE">
 <label start="0" end="18" name="Experiencer"/>
 <label start="25" end="32" name="Event"/>
 </layer>
 <layer rank="1" name="GF">
 <label start="0" end="18" name="Ext"/>
 <label start="25" end="32" name="Obj"/>
 </layer>
 <layer rank="1" name="PT">
 <label start="0" end="18" name="NP"/>
 <label start="25" end="32" name="NP"/>
 </layer>
 <layer rank="1" name="Target">
 <label start="20" end="23" name="Target"/>
 </layer>
 </annotationSet>
</sentence>

<sentence id="ebca5af9-e0494c4e">
 ...
 <w pos="VB" ref="3" deprel="ROOT">skulle</w>
 <element name="Experiencer">
 <w pos="PN" ref="4" dephead="3" deprel="SS">
 jag
 </w>
 </element>
 <element name="LU">
 <w msd="VB.AKT" ref="5" dephead="3" deprel="VG">
 vilja
 </w>
 </element>
 <element name="Event">
 <w msd="VB.INF" ref="6" dephead="5" deprel="VG">
 ha
 </w>
 <w pos="RG" ref="7" dephead="8" deprel="DT">
 sju
 </w>
 <w pos="NN" ref="8" dephead="6" deprel="OO">
 sångare
 </w>
 </element>
</sentence>

• Different XML schemes, POS tagsets and syntactic annotations
• Rules and heuristics for generalizing to RGL types, and for deciding the syntactic roles
• A lot of automatic annotation errors heuristic correction (partial)

2. Extracted sentence patterns (BFN)

Desiring Act Experiencer_NP.Subj Event_VP long.v

Desiring Act Experiencer_NP.Subj Event_VP Opt_Reason_Adv aspire.v

Desiring Act Experiencer_NP.Subj Opt_Time_Adv Event_VP fancy.v

Desiring Act Experiencer_NP.Subj Event_VP want.v

Desiring Act Experiencer_NP.Subj Event_VP yearn.v

Desiring Act Experiencer_NP.Subj Experiencer_NP.Subj Event_VP aspire.v

Desiring Act Experiencer_NP.Subj Event_NP.DObj want.v

Desiring Act Experiencer_NP.Subj Event_S desire.v

Desiring Act Experiencer_NP.Subj Focal_participant_Adv[after] yearn.v

Desiring Act Experiencer_NP.Subj Focal_participant_Adv[for] yearn.v

Desiring Act Experiencer_NP.Subj Focal_participant_Adv[for] yearn.v

Desiring Act Experiencer_NP.Subj Focal_participant_Adv want.v

Desiring Act Experiencer_NP.Subj Focal_participant_NP.DObj want.v

Desiring Act Experiencer_NP.Subj Focal_participant_NP.DObj want.v

Desiring Act Focal_participant_NP.DObj Experiencer_NP.Subj crave.v

Desiring Act Focal_participant_NP.DObj want.v

Desiring Pass Focal_participant_NP.Subj Experiencer_NP.DObj desire.v

Desiring Pass Focal_participant_NP.Subj Experiencer_NP.DObj want.v

3. Summarized valence patterns (BFN)

Desiring : 288

 Act : 275

 Event_VP Experiencer_NP : 61

 Experiencer_NP.Subj Event_VP : 59

 Event_VP Experiencer_NP.Subj : 2

 Experiencer_NP Focal_participant_NP : 61

 Experiencer_NP.Subj Focal_participant_NP.DObj : 55

 Focal_participant_NP.DObj Experiencer_NP.Subj : 6

 Experiencer_NP Focal_participant_Adv : 43

 Experiencer_NP.Subj Focal_participant_Adv[for] : 26

 Experiencer_NP.Subj Focal_participant_Adv[after] : 7

 Experiencer_NP.Subj Focal_participant_Adv : 2
 ...
 ...

 Pass : 13

 Experiencer_NP Focal_participant_NP : 5

 Focal_participant_NP.Subj Experiencer_NP.DObj : 5
 ...

• Normalized, ignoring the word order and prepositions (or cases)
• For the abstract syntax, we consider only the normalized patterns
• For the concrete syntax – the most frequent sentence pattern of each normalized pattern

• To find a representative yet condensed set of shared patterns

• Pattern A subsumes pattern B if:

– A.frame = B.frame

– type(A.LU) = type(B.LU)

– A.voice = B.voice

– B.FEs ⊆ A.FEs (incl. the syntactic types and roles)

• If A subsumes B and B subsumes A then A = B

• If a pattern of FN1 is subsumed by a pattern of FN2, it is added to
the shared set (and vice versa)

– In the final set, patterns that are subsumed by other patterns are removed

P1: Apply_heat V2 Act Cook_NP.Subj Food_NP.DObj
P2: Apply_heat V2 Act Cook_NP.Subj Container_Adv Food_NP.DObj
P3: Apply_heat V2 Act Food_NP.DObj

P1 is subsumed by P2, P3 is subsumed by P1, P2; P1 and P3 are to be removed

4. Pattern comparison by subsumption

• To roughly estimate the impact of various choices made in the extraction
process, we have run a series of experiments

• In the result, we have extracted a set of 869 shared semantico-syntactic
valence patterns covering 483 frames

Experiment series

0.0: Extract sentence patterns using FN-specific syntactic types ("baseline")
1.0: Skip examples containing few currently unconsidered syntactic types
2.0: Generalize syntactic types according to RGL
3.0: Skip once-used valence patterns (e.g., to reduce the propagation of annotation errors)

x.A: Skip repeated FEs
x.B: Skip non-core FEs and repeated FEs

P.S. The SweFN numbers are based on the Feb 2014 version

• Frame valence patterns are represented by functions

– Taking one or more core FEs (A-Z) and one LU as arguments

– Returning an object of type Clause whose linearization type is
{np: NP; vp: VP}

• FEs are declared as semantic categories subcategorized by
the syntactic RGL types

– NP, VP, Adv (includes prepositional objects), S (embedded sentences), QS

FrameNet-based grammar: abstract

cat Event_VP cat Focal_participant_NP

cat Experiencer_NP cat Focal_participant_Adv

fun Desiring_V : Experiencer_NP -> Focal_participant_Adv -> V -> Clause

fun Desiring_V2 : Experiencer_NP -> Focal_participant_NP -> V2 -> Clause

fun Desiring_V2_Pass : Experiencer_NP -> Focal_participant_NP -> V2 -> Clause

fun Desiring_VV : Event_VP -> Experiencer_NP -> VV -> Clause

• The mapping from the semantic FrameNet types to the syntactic RGL
types is shared for all languages

– Linearization types are of type Maybe to allow for optional (empty) FEs

• To implement the frame functions, RGL constructors are applied to the
arguments depending on their types and syntactic roles, and the voice

FrameNet-based grammar: concrete

lincat Focal_participant_NP = Maybe NP

lincat Focal_participant_Adv = Maybe Adv

lin Desiring_V2 experiencer focal_participant v2 = {

 np = fromMaybe NP experiencer ;

 vp = mkVP v2 (fromMaybe NP focal_participant)
}

lin Desiring_V2_Pass experiencer focal_participant v2 = {

 np = fromMaybe NP focal_participant ;

 vp = mkVP (passiveVP v2) (mkAdv by8agent_Prep (fromMaybe NP experiencer))
}

FrameNet-based grammar: concrete

The 869 semantico-syntactic valence patterns reuse 32 syntactic patterns

– 32 RGL-based code templates are used to generate the implementation

– Most templates are derived on the fly from few basic templates

• E.g., adverbial modifiers are added by recursive calls of the mkVP constructor
– Note: the order of Adv FEs can differ across languages

• All the distinct LUs from the sentence patterns that belong to the shared
valence patterns

– BFN: 2,831 LUs resulting in 3,432 lexical functions

• 1.21 functions per LU due to alternative verb types

– SweFN: 1,844 LUs, 1,899 functions (1.03 per LU)

• ~1.5 corpus examples per LU vs. ~20 per LU in BFN

• Verb types: V, V2, V3, VV, VS, V2V, V2S

• To distinguish between different types and senses of LUs, the verb type
and the frame name is appended to the function identifiers

– The LU-frame mapping, however, is not restricted (apart from the verb type)

FrameNet-based lexicon: abstract

fun hunger_V_Desiring : V fun längta_V_Desiring : V

fun yearn_V_Desiring : V fun känna_för_V2_Desiring : V2

fun want_V2_Desiring : V2 fun känna_för_VV_Desiring : VV

fun want_VV_Desiring : VV fun vilja_VV_Desiring : VV

fun yearn_VV_Desiring : VV fun känna_sig_V_Feeling : V

 fun känna_V2_Familiarity : V2

• Verb constructors are extracted from various RGL modules:

– L/DictL (6,034 for English, 7,324 for Swedish)

– translator/DictionaryL (6,037 for English, 2,430 for Swedish)

– L/LexiconL (98 for English, 96 for Swedish)

– L/IrregL (173 for English, 182 for Swedish)

– L/StructuralL (2 for English, 4 for Swedish)

• For each lexical function, generate its linearization based on the
corresponding verb constructor, taking into account particles and reflexive
pronouns (MWEs), and the verb type

• Linearization: 3,350 (98%) Eng entries and 1,789 (94%) Swe entries

• Simple, fixed multi-word units (MWU):
– 98 for English – ~3% of all entries and ~84% of all MWU entries

– 465 for Swedish – ~25% of all entries and ~85% of all MWU entries

FrameNet-based lexicon: concrete

lin want_V2_Desiring = mkV2 (regV "want")

lin känna_för_VV_Desiring = mkVV (partV (irregV "känna" "kände" "känt") "för")

lin känna_sig_V_Feeling = reflV (irregV "känna" "kände" "känt")

• Based on the multilingual RGL dictionaries (translator/DictionaryL)

• Result: 703 BFN entries (21%) aligned with 900 SweFN entires (47%)

– Still promising (there is a clear space for improvement)

FrameNet-based lexicon: alignment

Eng: lin feel_V = IrregEng.feel_V

Swe: lin feel_V = mkV "känna" "kände" "känt"

Eng: lin want_V2 = mkV2 (mkV "want")

Swe: lin want_V2 = mkV2 IrregSwe.vilja_V

Eng: lin yearn_V = mkV "yearn" "yearns" "yearned" "yearned" "yearning"

Swe: lin yearn_V = mkV "trängtar"

feel_like_VV_Desiring = känna_för_VV_Desiring

want_VV_Desiring = vilja_VV_Desiring

http://grammaticalframework.org/framenet/

http://grammaticalframework.org/framenet/

https://github.com/GrammaticalFramework/gf-contrib

Source code

http://grammaticalframework.org/framenet/
http://grammaticalframework.org/framenet/
http://grammaticalframework.org/framenet/

Case study: Phrasebook

• Apart from idiomatic phrases, many can be constructed by applying
the generated frame functions

• ALive : Person -> Country -> Action
– Residence_V : Location_Adv -> Resident_NP -> V -> Clause

• I live in Sweden (Eng)
• jag bor i Sverige (Swe)

• AWantGo : Person -> Place -> Action
– Desiring_VV : Event_VP -> Experiencer_NP -> VV -> Clause
– Motion_V_2 : Goal_Adv -> Source_Adv -> Theme_NP -> V -> Clause

• we want to go to a museum (Eng)
• vi vill gå till ett museum (Swe)

• No changes needed in the Phrasebook abstract syntax
– Frame functions are not part of Phrasebook abstract syntax trees...

• The re-engineered grammar generates equal phrases

• Before: • After:

lin ALive p co =
 mkCl
 p.name
 (mkVP
 (mkVP (mkV "live"))
 (mkAdv in_Prep co))

lin AWantGo p pl =
 mkCl
 p.name
 want_VV
 (mkVP
 (mkVP IrregEng.go_V)
 pl.to)

lin ALive p co = let cl : Clause =
 Residence_V
 (Just Adv (mkAdv in_Prep co))
 (Just NP p.name)
 live_V_Residence
 in mkCl cl.np cl.vp

lin AWantGo p pl = let cl : Clause =
 Desiring_VV
 (Just VP -- Event
 (Motion_V_2
 (Just Adv pl.to) -- Goal
 (Nothing' Adv) -- Source
 (Nothing' NP) -- Theme
 go_V_Motion
).vp)
 (Just NP p.name) -- Experiencer
 want_VV_Desiring
 in mkCl cl.np cl.vp

Case study: Phrasebook

Case study: Paintings

• Verbalizes descriptions of museum objects stored in an ontology

• A set of triples describing the artwork Bacchus:
– <Bacchus> <createdBy> <Leonardo_da_Vinci>
– <Bacchus> <hasDimension> <Bacchus_ImageDimesion>
– <Bacchus> <hasCreationDate> <Bacchus_CreationDate>
– <Bacchus> <hasCurrentLocation> <Musee_du_Louvre>
– <Bacchus_ImageDimesion> <lengthValue> 115
– <Bacchus_ImageDimesion> <heightValue> 177
– <Bacchus_CreationDate> <timePeriodValue> 1510

• Triples are combined by the grammar to generate a coherent text
– DPainting : Painting -> Painter -> Year -> Size -> Museum -> Description

• Eng: Bacchus was painted by Leonardo da Vinci in 1510. It measures 115 by 177 cm.
This work is displayed at the Musée du Louvre.

• Swe: Bacchus målades av Leonardo da Vinci år 1510. Den mäter 115 gånger 177
cm. Det här verket är utställt på Louvren.

• The re-engineered grammar generates semantically equiv. descriptions

– In Swedish, the use of the main verb mäta is imposed instead of the copula

Case study: Paintings

lin DPainting
 painting painter year size museum =
let
 s1 : Text = mkText (mkS
 pastTense (mkCl painting (mkVP
 (mkVP (passiveVP paint_V2)
 (mkAdv by8agent_Prep
 painter.long)) year.s))) ;

 s2 : Text = mkText
 (mkCl it_NP (mkVP (mkVP
 (mkVPSlash measure_V2)
 (mkNP (mkN "")) size.s))) ;

 s3 : Text = mkText
 (mkCl (mkNP this_Det painting)
 (mkVP (passiveVP display_V2)
 museum.s))

in mkText s1 (mkText s2 s3) ;

lin DPainting
 painting painter year size museum =
let
 cl1 : Clause =
 Create_physical_artwork_V2_Pass*
 (Just NP painter.long) -- Creator
 (Just NP painting) -- Representation
 paint_V2_Create_physical_artwork ;

 cl2 : Clause = Dimension_V2*
 (Just NP (mkNP emptyNP size.s)) -- Measurement
 (Just NP it_NP) -- Object
 measure_V2* ;

 cl3 : Clause = Placing_V2_Pass
 (Just Adv museum.s) -- Goal
 (Just NP (mkNP this_Det painting)) -- Theme
 display_V2*

in mkText (mkText (mkS pastTense
 (mkCl cl1.np (mkVP cl1.vp year.s))) -- Time
 (mkText (mkCl cl2.np cl2.vp)
 (mkText (mkCl cl1.np cl3.vp))) ; * Currently not available out-of-the-box

Evaluation

• Intrinsic
– The number of examples in the source corpora that belong to the set of

shared frames and are covered by the shared valence patterns

– Corpus examples are judged by the sentence patterns that represent
them, disregarding non-core FEs, word order, and prepositions

• The syntactic roles and the grammatical voice are considered

– BFN: 57,615 examples (90%) belong to the shared set of 483 frames, and
77.5% of them are covered by the shared patterns

• SweFN: 3,348 examples (80%), 77.5% are covered

– The shared lexicon covers 25.1% of BFN sentences and 35.8% of SweFN

• Extrinsic
– The number of constructors used to linearize functions in the original vs.

the re-engineered grammar (comparison of code complexity)

• In Paintings, the number of constructors is reduced by 38% while in
Phrasebook only by 20–27%

Summary and future work

• Despite the small SweFN corpus, the set of extracted shared valence
patterns is concise and already provides a wide coverage

– The relatively small number of patterns allows for manual checking
– The numbers are not stable and vary across releases but illustrate the tendency

• Include shared non-core FEs; generate missing passive voice functions

• Separate LU-governed prepositional objects from adverbial modifiers (Adv

vs. NP; probability); differentiate syntactic roles of VP FEs (object vs. Adv)

• Add more languages (looking for cooperation)

– Intersection of all languages vs. union of intersections of language pairs
– ExtraL modules

• Towards FrameNet-based semantic parsing in GF

– First, frame labelling
• As an embedded grammar
• Restrict LUs to frames by using GF dependent types

– Later, semantic role labelling (SRL)

Constructicon
• A collection of conventionalized (learned) pairings of form and meaning

(or function), typically based on principles of Construction Grammar, CxG
(Fillmore et al. 1988, Goldberg 1995)

– Semantics is associated directly with the surface form

– LUs in FrameNet: pairings of word and meaning (frame)
• Including fixed MWUs

• Each construction (cx) contains at least one variable element

– Often at least one fixed element as well

– Somewhere in-between the syntax and the lexicon

• An example from FrameNet Constructicon: make one’s way (WAY_MEANS)

– Structure: {Motion verb [Verb] [PossNP]}

– Evokes: MOTION

• [ThemeThey] {hacked their way} [Sourceout] [Goalinto the open].

• [ThemeWe] {sang our way} [Pathacross Europe].

Towards a multilingual constructicon
• Berkeley/FrameNet Constructicon (BCxn)

– A pilot project (~70 cx)

• Swedish Constructicon (SweCcn)

– An ongoing project (nearly 400 cx so far), inspired by BCxn

• Brazilian Portuguese Constructicon

– An ongoing project, inspired by BCxn

• ...

• Allows for non-compositional translation in a compositional way

– e.g. some constructions are covered by L/ConstructionL in RGL

• Constructions with a referential meaning may be linked via
FrameNet frames, while those with a more abstract grammatical
function may be related in terms of their grammatical properties

[Bäckström L., Lyngfelt B., Sköldberg E. (2014) Towards interlingual constructicography]

http://spraakbanken.gu.se/eng/sweccn

http://spraakbanken.gu.se/eng/sweccn
http://spraakbanken.gu.se/eng/sweccn

SweCcn
• Partially schematic multi-word units/expressions

• Particularly addresses constructions of relevance for second-language
learning, but also covers argument structure constructions

• Descriptions are manually derived from corpus examples

• Construction elements (CE):

– Internal CEs are a part of the cx

– External CEs are a part of
the valency of the cx

– Described in more detail by
attribute-value matrices specifying
their syntactic and semantic features

• A central part of cx descriptions
is the free text definitions

– ‘eat himself full’ vs. ‘feel himself tired’
(äta sig mätt vs. känna sig trött)

SweCcn → GF
• Task: convert the semi-formal SweCcn into a computational CxG

• Why GF?

– There is no formal distinction between lexical and syntactic functions in GF –
fits the nature of constructicons

– The potential support for multilinguality

– Based on RGL / an extension to RGL / an embedded grammar

– An extension to the FrameNet-based grammar and lexicon

• Goals:

– From the linguistic point of view
• New insights on the interaction between the lexicon and the grammar
• Allows for testing the linguistic descriptions of constructions

– From the language technology point of view:
• Facilitates language processing in both mono- and multilingual settings (e.g. IE, MT)

– Useful in second-language learning
• Linguistic or technology point of view?

Conversion steps
• Preprocessing:

– Automatic normalization and consistency checking

– Automatic rewriting of the original structures in case of optional CEs and
alternative types of CEs, so that each combination has a separate GF function

• Does not apply to alternative LUs (either free variants or should be split into
alternative constructions, or the CE should be made more general)

– Automatic conversion of SweCcn categories to RGL categories

• May result in more rewriting

• Automatic generation of the abstract syntax

• Automatic generation of the concrete syntax

– By systematically applying the high-level RGL constructors

• And limited low-level means

• Manual verification and completion (ToDo)

– Requires a good knowledge and linguistic intuition of the language

Preprocessing examples
• behöva NP1 till NP2|VP →

behövaV NP1 tillPrep NP2 | behövaV NP tillPrep VP

• snacka|prata|tala NPindef →

snackaV|prataV|talaV aSg_Det CN |

snackaV|prataV|talaV aPl_Det CN |

snackaV|prataV|talaV CN

• V av Pnrefl (NP) →

V avPrep reflPron NP | V avPrep reflPron

• N|Adj+städa →

N + städaV | A + städaV

Abstract syntax
• Each construction is represented by one or more functions

depending on how many alternative structures are produced in the
preprocessing steps

• Each function takes one or more arguments that correspond to the
variable CEs of the respective alternative construction

• behöva_något_till_något_VP1 : NP -> NP -> VP
behöva_något_till_något_VP2 : NP -> VP -> VP

• snacka_NP1: CN -> VP
snacka_NP2: CN -> VP
snacka_NP3: CN -> VP

• verba_av_sig_transitiv1: V -> NP -> VP
verba_av_sig_transitiv2: V -> VP

• x_städa1: N -> VP
x_städa2: A -> VP

Concrete syntax

Construction Elements Patterns

behöva_något_till_något_VP_1 behöva_V NP_1 till_Prep NP_2 {V} NP {Prep} NP

behöva_något_till_något_VP_2 behöva_V NP_1 till_Prep VP {V} NP {Prep} VP

Code template

1. mkVP (mkVP (mkV2 mkV) NP) (mkAdv mkPrep NP)

2. The parser failed at token VP

• Many constructions can be implemented by systematically applying
the high-level RGL constructors

– A parsing problem: which constructors in which order?

A simple GF grammar

Final code (by automatic post-processing)

lin behöva_något_till_något_VP_1 np_1 np_2 = mkVP
 (mkVP (mkV2 (mkV "behöver")) np_1)
 (SyntaxSwe.mkAdv (mkPrep "till") np_2) ;

Code-generating grammar

A simplified fragment of the abstract syntax

A simplified fragment of the concrete syntax

parse -cat=VP "{V} {Prep} NP"

mkVP__V2_NP
 (mkV2__V (partV _mkV___V
 (toStr__Prep _mkPrep_))) _NP_

mkVP__V2_NP (mkV2__V_Prep
 _mkV___V _mkPrep_) _NP_

mkVP__VP_Adv (mkVP__V _mkV___V)
 (mkAdv _mkPrep_ _NP_)

Running example

Results
• In the current experiment, we have consider only the 96 VP constructions

which resulted in 127 functions

– Dominating in SweCcn; have the most complex internal structure

• Given the 127 functions, we have automatically generated the
implementation for 98 functions (77%) achieving a 70–90% accuracy

– There is clear space for improvement

• Manual completion postponed because of the active development of
SweCcn (changes → synchronization)

• https://github.com/GrammaticalFramework/gf-contrib (SweCcn)

• A methodology on how to systematically formalise the semi-formal
representation of SweCcn in GF, showing that a GF construction grammar
can be, to a large extent, acquired automatically

• Consequence: feedback to SweCcn developers on how to improve the
annotation consistency and adequacy of the original construction resource

https://github.com/GrammaticalFramework/gf-contrib
https://github.com/GrammaticalFramework/gf-contrib
https://github.com/GrammaticalFramework/gf-contrib

• Normunds Grūzītis, Pēteris Paikens, Guntis Bārzdiņš. FrameNet
Resource Grammar Library for GF. CNL 2012

• Dana Dannélls, Normunds Grūzītis. Extracting a bilingual semantic
grammar from FrameNet-annotated corpora. LREC 2014

• Dana Dannélls, Normunds Grūzītis. Controlled natural language
generation from a multilingual FrameNet-based grammar. CNL 2014

• Normunds Grūzītis, Dana Dannélls, Benjamin Lyngfelt, Aarne Ranta.
Formalising the Swedish Constructicon in Grammatical Framework.
GEAF 2015

• Normunds Grūzītis, Dana Dannélls. A Multilingual FrameNet-based
Grammar and Lexicon for Controlled Natural Language. Journal of LRE
(in progress)

Publications

