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FrameNet (FN) 

• A lexico-semantic resource based on the theory of frame 
semantics (Fillmore et al. 2003) 

– A semantic frame represents a cognitive, prototypical situation 
(scenario) characterized by frame elements (FE) – semantic valence 

– Frames are “evoked” in sentences by target words – lexical units (LU) 

– FEs are mapped based on the syntactic valence of the LU 

• The syntactic valence patterns are derived from FN-annotated corpora 
(for an increasing number of languages) 

– FEs are split into core and non-core ones 

• Core FEs uniquely characterize the frame and syntactically tend to 
correspond to verb arguments 

• Non-core FEs are not specific to the frame and typically are adjuncts 



BFN and SweFN 

• Our experiment is based on two FNs: the original Berkeley 
FrameNet (BFN) and the Swedish FrameNet (SweFN) 

– We consider only those frames for which there is at least one corpus 
example where the frame is evoked by a verb 

• BFN 1.5 (2010) defines 1,020 frames of which 559 are evoked 
by 3,254 verb LUs in 69,260 annotated sentences 

• A SweFN development version (Dec 2014) covers 995 frames 
of which 660 are evoked by 2,887 verb LUs in 4,400 sentences 

• SweFN, like many other FNs, mostly reuses BFN frames, 
hence, BFN frames can be seen as a semantic interlingua 

– A linguistically motivated ontology 



Example frame 

want.v..6412 känna_för.vb..1 

Introduced in BFN, reused in SweFN 

e.g. “[I]Experiencer do n't WANT [to deceive anyone]Event” 
                    | 
  an embedded frame 

Some valence patterns found in SweFN Some valence patterns found in BFN 

e.g. “[Jag]Experiencer KÄNNER FÖR [en tur på 
landet]Focal_participant” 



FrameNet and GF 

• Existing FNs are not entirely formal and computational 

– We provide a limited but computational FN-based grammar and lexicon 

• Grammatical Framework: 

– Separates between an abstract syntax and concrete syntaxes 

– Provides a general-purpose resource grammar library (RGL) 

• Large mono- and multilingual lexicons (for an increasing number of languages) 

• The language-independent layer of FrameNet (frames and FEs) – 
the abstract syntax 

– The language-specific layers (surface realization of frames and FEs; LUs) – 
concrete syntaxes 

• RGL can be used for unifying the syntactic types used in different 
FNs and for the concrete implementation of frames 

– FrameNet allows for abstracting over RGL 



Relation to CNL 

• Kuhn (2014) defines Controlled Natural Language (CNL) as “a 
constructed language that is based on a certain natural language, 
being more restrictive concerning lexicon, syntax, and/or semantics, 
while preserving most of its natural properties” 

• We deviate from this definition in two aspects: 

– Our intention is to produce a reusable grammar that covers a restricted subset 
of NL instead of a grammar of a predefined constructed language 

– We produce a currently bilingual but potentially multilingual grammar library 
which is therefore not based on exactly one NL but inherently has a shared 
semantic abstract syntax 

• Thus, we do not provide a CNL as such but a high-level API for the 
facilitation of the development of CNL grammars, making them 
more flexible – easier to modify and extend 

• In a sense, we aim at bridging the gap between CNL and NL 



Specific aim (1) 

• Provide a semantic API on top of RGL to facilitate the development 
of GF application grammars 

– In combination with the syntactic API of RGL 

– Hiding the comparatively complex construction of verb phrases 

mkCl person (mkVP (mkVP live_V) (mkAdv in_Prep place)) 
    -- mkCl : NP -> VP -> Cl 
    -- mkVP : V -> VP 
    -- mkVP : VP -> Adv -> VP 
    -- mkAdv : Prep -> NP -> Adv 
 
 
Residence                    -- Residence : NP -> Adv -> V -> Cl 
    person                   -- NP (Resident) 
    (mkAdv in_Prep place)    -- Adv (Location) 
    live_V_Residence         -- V (LU) 



Specific aim (2) 

• FN-annotated knowledge bases  multilingual verbalization 

Imants Ziedonis ir dzimis 1933. gada 3. maijā Slokas pagastā. 
Imants Ziedonis was born in Sloka parish on 3 May 1933. 



Outline 



Extraction of frame valence patterns 

• Valence patterns that are shared between FNs (currently, BFN and SweFN) 

– Multilingual applications 

– Cross-lingual validation 

• Currently, only core FEs that make the frames unique 

• Example: some shared patterns of the frame Desiring 

– Desiring/VAct Experiencer/NPSubj Focal_participant/Adv 
e.g., [Dexter]Experiencer [YEARNED] [for a cigarette]Focal_participant 

– Desiring/V2Act Experiencer/NPSubj Focal_participant/NPDObj 

e.g., [she]Experiencer [WANTS] [a protector]Focal_participant 

– Desiring/VVAct Event/VP Experiencer/NPSubj 

e.g., [I]Experiencer would n’t [WANT] [to know]Event 

• The uniform patterns contain sufficient info for generating the grammar 



1. Language- and FN-specific processing 
<sentence ID="732945"> 
 <text>Traders in the city want a change.</text> 
 <annotationSet><layer rank="1" name="BNC"> 
  <label start="0" end="6" name="NP0"/> 
  <label start="20" end="23" name="VVB"/> 
  <label start="25" end="25" name="AT0"/> 
 </layer></annotationSet> 
 <annotationSet status="MANUAL"> 
  <layer rank="1" name="FE"> 
   <label start="0" end="18" name="Experiencer"/> 
   <label start="25" end="32" name="Event"/> 
  </layer> 
  <layer rank="1" name="GF"> 
   <label start="0" end="18" name="Ext"/> 
   <label start="25" end="32" name="Obj"/> 
  </layer> 
  <layer rank="1" name="PT"> 
   <label start="0" end="18" name="NP"/> 
   <label start="25" end="32" name="NP"/> 
  </layer> 
  <layer rank="1" name="Target"> 
   <label start="20" end="23" name="Target"/> 
  </layer> 
 </annotationSet> 
</sentence> 

<sentence id="ebca5af9-e0494c4e"> 
 ... 
 <w pos="VB" ref="3" deprel="ROOT">skulle</w> 
 <element name="Experiencer"> 
  <w pos="PN" ref="4" dephead="3" deprel="SS"> 
   jag 
  </w> 
 </element> 
 <element name="LU"> 
  <w msd="VB.AKT" ref="5" dephead="3" deprel="VG"> 
   vilja 
  </w> 
 </element> 
 <element name="Event"> 
  <w msd="VB.INF" ref="6" dephead="5" deprel="VG"> 
   ha 
  </w> 
  <w pos="RG" ref="7" dephead="8" deprel="DT"> 
   sju 
  </w> 
  <w pos="NN" ref="8" dephead="6" deprel="OO"> 
   sångare 
  </w> 
 </element> 
</sentence> 

• Different XML schemes, POS tagsets and syntactic annotations 
• Rules and heuristics for generalizing to RGL types, and for deciding the syntactic roles 
• A lot of automatic annotation errors  heuristic correction (partial) 



2. Extracted sentence patterns (BFN) 

Desiring    Act    Experiencer_NP.Subj Event_VP                        long.v 

Desiring    Act    Experiencer_NP.Subj Event_VP Opt_Reason_Adv         aspire.v 

Desiring    Act    Experiencer_NP.Subj Opt_Time_Adv Event_VP           fancy.v 

Desiring    Act    Experiencer_NP.Subj Event_VP                        want.v 

Desiring    Act    Experiencer_NP.Subj Event_VP                        yearn.v 

Desiring    Act    Experiencer_NP.Subj Experiencer_NP.Subj Event_VP    aspire.v 

Desiring    Act    Experiencer_NP.Subj Event_NP.DObj                   want.v 

Desiring    Act    Experiencer_NP.Subj Event_S                         desire.v 

 

Desiring    Act    Experiencer_NP.Subj Focal_participant_Adv[after]    yearn.v 

Desiring    Act    Experiencer_NP.Subj Focal_participant_Adv[for]      yearn.v 

Desiring    Act    Experiencer_NP.Subj Focal_participant_Adv[for]      yearn.v 

Desiring    Act    Experiencer_NP.Subj Focal_participant_Adv           want.v 

Desiring    Act    Experiencer_NP.Subj Focal_participant_NP.DObj       want.v 

Desiring    Act    Experiencer_NP.Subj Focal_participant_NP.DObj       want.v 

Desiring    Act    Focal_participant_NP.DObj Experiencer_NP.Subj       crave.v 

Desiring    Act    Focal_participant_NP.DObj                           want.v 

 

Desiring    Pass   Focal_participant_NP.Subj Experiencer_NP.DObj       desire.v 

Desiring    Pass   Focal_participant_NP.Subj Experiencer_NP.DObj       want.v 



3. Summarized valence patterns (BFN) 

Desiring : 288 

    Act : 275 

        Event_VP Experiencer_NP : 61 

            Experiencer_NP.Subj Event_VP : 59 

            Event_VP Experiencer_NP.Subj : 2 

        Experiencer_NP Focal_participant_NP : 61 

            Experiencer_NP.Subj Focal_participant_NP.DObj : 55 

            Focal_participant_NP.DObj Experiencer_NP.Subj : 6 

        Experiencer_NP Focal_participant_Adv : 43 

            Experiencer_NP.Subj Focal_participant_Adv[for] : 26 

            Experiencer_NP.Subj Focal_participant_Adv[after] : 7 

            Experiencer_NP.Subj Focal_participant_Adv : 2 
            ... 
         ... 

    Pass : 13 

        Experiencer_NP Focal_participant_NP : 5 

            Focal_participant_NP.Subj Experiencer_NP.DObj : 5 
        ... 

• Normalized, ignoring the word order and prepositions (or cases) 
• For the abstract syntax, we consider only the normalized patterns 
• For the concrete syntax – the most frequent sentence pattern of each normalized pattern 



• To find a representative yet condensed set of shared patterns 

• Pattern A subsumes pattern B if: 

– A.frame = B.frame 

– type(A.LU) = type(B.LU) 

– A.voice = B.voice 

– B.FEs ⊆ A.FEs (incl. the syntactic types and roles) 

• If A subsumes B and B subsumes A then A = B 

• If a pattern of FN1 is subsumed by a pattern of FN2, it is added to 
the shared set (and vice versa) 

– In the final set, patterns that are subsumed by other patterns are removed 
 

P1: Apply_heat  V2  Act  Cook_NP.Subj Food_NP.DObj 
P2: Apply_heat  V2  Act  Cook_NP.Subj Container_Adv Food_NP.DObj 
P3: Apply_heat  V2  Act  Food_NP.DObj 
 

P1 is subsumed by P2, P3 is subsumed by P1, P2; P1 and P3 are to be removed 

4. Pattern comparison by subsumption 



• To roughly estimate the impact of various choices made in the extraction 
process, we have run a series of experiments 
 
 
 
 
 
 
 
 
 
 
 
 
 

• In the result, we have extracted a set of 869 shared semantico-syntactic 
valence patterns covering 483 frames 

Experiment series 

0.0:  Extract sentence patterns using FN-specific syntactic types ("baseline") 
1.0:  Skip examples containing few currently unconsidered syntactic types 
2.0:  Generalize syntactic types according to RGL 
3.0:  Skip once-used valence patterns (e.g., to reduce the propagation of annotation errors) 

x.A:  Skip repeated FEs 
x.B:  Skip non-core FEs and repeated FEs 

P.S. The SweFN numbers are based on the Feb 2014 version 



• Frame valence patterns are represented by functions 

– Taking one or more core FEs (A-Z) and one LU as arguments 

– Returning an object of type Clause whose linearization type is 
{np: NP; vp: VP} 

 
 
 

 

• FEs are declared as semantic categories subcategorized by 
the syntactic RGL types 

– NP, VP, Adv (includes prepositional objects), S (embedded sentences), QS 

FrameNet-based grammar: abstract 

cat Event_VP   cat Focal_participant_NP 

cat Experiencer_NP   cat Focal_participant_Adv 

fun Desiring_V       : Experiencer_NP -> Focal_participant_Adv -> V -> Clause 

fun Desiring_V2      : Experiencer_NP -> Focal_participant_NP -> V2 -> Clause 

fun Desiring_V2_Pass : Experiencer_NP -> Focal_participant_NP -> V2 -> Clause 

fun Desiring_VV      : Event_VP -> Experiencer_NP -> VV -> Clause 



• The mapping from the semantic FrameNet types to the syntactic RGL 
types is shared for all languages 

– Linearization types are of type Maybe to allow for optional (empty) FEs 

• To implement the frame functions, RGL constructors are applied to the 
arguments depending on their types and syntactic roles, and the voice 

FrameNet-based grammar: concrete 

lincat Focal_participant_NP  = Maybe NP 

lincat Focal_participant_Adv = Maybe Adv 

lin Desiring_V2 experiencer focal_participant v2 = { 

  np = fromMaybe NP experiencer ; 

  vp = mkVP v2 (fromMaybe NP focal_participant) 
} 

 
lin Desiring_V2_Pass experiencer focal_participant v2 = { 

  np = fromMaybe NP focal_participant ; 

  vp = mkVP (passiveVP v2) (mkAdv by8agent_Prep (fromMaybe NP experiencer)) 
} 



FrameNet-based grammar: concrete 

The 869 semantico-syntactic valence patterns reuse 32 syntactic patterns 

– 32 RGL-based code templates are used to generate the implementation 

– Most templates are derived on the fly from few basic templates 

• E.g., adverbial modifiers are added by recursive calls of the mkVP constructor 
– Note: the order of Adv FEs can differ across languages 



• All the distinct LUs from the sentence patterns that belong to the shared 
valence patterns 

– BFN: 2,831 LUs resulting in 3,432 lexical functions 

• 1.21 functions per LU due to alternative verb types 

– SweFN: 1,844 LUs, 1,899 functions (1.03 per LU) 

• ~1.5 corpus examples per LU vs. ~20 per LU in BFN 

• Verb types: V, V2, V3, VV, VS, V2V, V2S 

• To distinguish between different types and senses of LUs, the verb type 
and the frame name is appended to the function identifiers 

– The LU-frame mapping, however, is not restricted (apart from the verb type) 

FrameNet-based lexicon: abstract 

fun hunger_V_Desiring : V  fun längta_V_Desiring     : V 

fun yearn_V_Desiring  : V  fun känna_för_V2_Desiring : V2 

fun want_V2_Desiring  : V2  fun känna_för_VV_Desiring : VV 

fun want_VV_Desiring  : VV  fun vilja_VV_Desiring     : VV 

fun yearn_VV_Desiring : VV  fun känna_sig_V_Feeling   : V 

    fun känna_V2_Familiarity  : V2 



• Verb constructors are extracted from various RGL modules: 

– L/DictL (6,034 for English, 7,324 for Swedish) 

– translator/DictionaryL (6,037 for English, 2,430 for Swedish) 

– L/LexiconL (98 for English, 96 for Swedish) 

– L/IrregL (173 for English, 182 for Swedish) 

– L/StructuralL (2 for English, 4 for Swedish) 

• For each lexical function, generate its linearization based on the 
corresponding verb constructor, taking into account particles and reflexive 
pronouns (MWEs), and the verb type 

• Linearization: 3,350 (98%) Eng entries and 1,789 (94%) Swe entries 

• Simple, fixed multi-word units (MWU): 
– 98 for English – ~3% of all entries and ~84% of all MWU entries 

– 465 for Swedish – ~25% of all entries and ~85% of all MWU entries 

FrameNet-based lexicon: concrete 

lin want_V2_Desiring = mkV2 (regV "want") 

lin känna_för_VV_Desiring = mkVV (partV (irregV "känna" "kände" "känt") "för") 

lin känna_sig_V_Feeling = reflV (irregV "känna" "kände" "känt") 



• Based on the multilingual RGL dictionaries (translator/DictionaryL) 

 

 

 

 

 

 

 

 

 

 

• Result: 703 BFN entries (21%) aligned with 900 SweFN entires (47%) 

– Still promising (there is a clear space for improvement) 

FrameNet-based lexicon: alignment 

Eng: lin feel_V = IrregEng.feel_V 

Swe: lin feel_V = mkV "känna" "kände" "känt" 

 

Eng: lin want_V2 = mkV2 (mkV "want") 

Swe: lin want_V2 = mkV2 IrregSwe.vilja_V 

 

Eng: lin yearn_V = mkV "yearn" "yearns" "yearned" "yearned" "yearning" 

Swe: lin yearn_V = mkV "trängtar" 

feel_like_VV_Desiring = känna_för_VV_Desiring 
 

want_VV_Desiring = vilja_VV_Desiring 



http://grammaticalframework.org/framenet/ 

http://grammaticalframework.org/framenet/


https://github.com/GrammaticalFramework/gf-contrib 

Source code 

http://grammaticalframework.org/framenet/
http://grammaticalframework.org/framenet/
http://grammaticalframework.org/framenet/


Case study: Phrasebook 

• Apart from idiomatic phrases, many can be constructed by applying 
the generated frame functions 

• ALive : Person -> Country -> Action 
– Residence_V : Location_Adv -> Resident_NP -> V -> Clause 

• I live in Sweden (Eng) 
• jag bor i Sverige (Swe) 

• AWantGo : Person -> Place -> Action 
– Desiring_VV : Event_VP -> Experiencer_NP -> VV -> Clause 
– Motion_V_2 : Goal_Adv -> Source_Adv -> Theme_NP -> V -> Clause 

• we want to go to a museum (Eng) 
• vi vill gå till ett museum (Swe) 

• No changes needed in the Phrasebook abstract syntax 
– Frame functions are not part of Phrasebook abstract syntax trees... 

• The re-engineered grammar generates equal phrases 



• Before: • After: 

lin ALive p co = 
  mkCl 
    p.name 
    (mkVP 
      (mkVP (mkV "live")) 
      (mkAdv in_Prep co)) 

 
lin AWantGo p pl =  
  mkCl  
    p.name  
    want_VV  
    (mkVP  
      (mkVP IrregEng.go_V)  
      pl.to) 

lin ALive p co = let cl : Clause = 
  Residence_V 
    (Just Adv (mkAdv in_Prep co)) 
    (Just NP p.name) 
    live_V_Residence 
  in mkCl cl.np cl.vp 

 
lin AWantGo p pl = let cl : Clause = 
  Desiring_VV 
    (Just VP             -- Event 
      (Motion_V_2 
        (Just Adv pl.to) -- Goal 
        (Nothing' Adv)   -- Source 
        (Nothing' NP)    -- Theme 
        go_V_Motion 
      ).vp) 
    (Just NP p.name)     -- Experiencer 
    want_VV_Desiring 
  in mkCl cl.np cl.vp 

Case study: Phrasebook 



Case study: Paintings 

• Verbalizes descriptions of museum objects stored in an ontology 

• A set of triples describing the artwork Bacchus: 
– <Bacchus> <createdBy> <Leonardo_da_Vinci> 
– <Bacchus> <hasDimension> <Bacchus_ImageDimesion> 
– <Bacchus> <hasCreationDate> <Bacchus_CreationDate> 
– <Bacchus> <hasCurrentLocation> <Musee_du_Louvre> 
– <Bacchus_ImageDimesion> <lengthValue> 115 
– <Bacchus_ImageDimesion> <heightValue> 177 
– <Bacchus_CreationDate> <timePeriodValue> 1510 

• Triples are combined by the grammar to generate a coherent text 
– DPainting : Painting -> Painter -> Year -> Size -> Museum -> Description 

• Eng: Bacchus was painted by Leonardo da Vinci in 1510. It measures 115 by 177 cm. 
This work is displayed at the Musée du Louvre. 

• Swe: Bacchus målades av Leonardo da Vinci år 1510. Den mäter 115 gånger 177 
cm. Det här verket är utställt på Louvren. 

• The re-engineered grammar generates semantically equiv. descriptions 

– In Swedish, the use of the main verb mäta is imposed instead of the copula 



Case study: Paintings 

lin DPainting 
 painting painter year size museum = 
let 
 s1 : Text = mkText (mkS 
  pastTense (mkCl painting (mkVP 
   (mkVP (passiveVP paint_V2) 
    (mkAdv by8agent_Prep 
     painter.long)) year.s))) ; 
 
 s2 : Text = mkText 
  (mkCl it_NP (mkVP (mkVP 
   (mkVPSlash measure_V2) 
   (mkNP (mkN "")) size.s))) ; 
 
 s3 : Text = mkText 
  (mkCl (mkNP this_Det painting) 
   (mkVP (passiveVP display_V2) 
    museum.s)) 
 
in mkText s1 (mkText s2 s3) ; 

lin DPainting  
 painting painter year size museum = 
let 
 cl1 : Clause = 
  Create_physical_artwork_V2_Pass* 
   (Just NP painter.long) -- Creator 
   (Just NP painting)     -- Representation 
   paint_V2_Create_physical_artwork ; 
 
 cl2 : Clause = Dimension_V2* 
  (Just NP (mkNP emptyNP size.s)) -- Measurement 
  (Just NP it_NP)                -- Object 
  measure_V2* ; 
 
 cl3 : Clause = Placing_V2_Pass 
  (Just Adv museum.s)                -- Goal 
  (Just NP (mkNP this_Det painting)) -- Theme 
  display_V2* 
 
in mkText (mkText (mkS pastTense 
 (mkCl cl1.np (mkVP cl1.vp year.s))) -- Time 
 (mkText (mkCl cl2.np cl2.vp) 
  (mkText (mkCl cl1.np cl3.vp))) ; * Currently not available out-of-the-box 



Evaluation 

• Intrinsic 
– The number of examples in the source corpora that belong to the set of 

shared frames and are covered by the shared valence patterns 

– Corpus examples are judged by the sentence patterns that represent 
them, disregarding non-core FEs, word order, and prepositions 

• The syntactic roles and the grammatical voice are considered 

– BFN: 57,615 examples (90%) belong to the shared set of 483 frames, and 
77.5% of them are covered by the shared patterns 

• SweFN: 3,348 examples (80%), 77.5% are covered 

– The shared lexicon covers 25.1% of BFN sentences and 35.8% of SweFN 

• Extrinsic 
– The number of constructors used to linearize functions in the original vs. 

the re-engineered grammar (comparison of code complexity) 

• In Paintings, the number of constructors is reduced by 38% while in 
Phrasebook only by 20–27% 



Summary and future work 

• Despite the small SweFN corpus, the set of extracted shared valence 
patterns is concise and already provides a wide coverage 

– The relatively small number of patterns allows for manual checking 
– The numbers are not stable and vary across releases but illustrate the tendency 

• Include shared non-core FEs; generate missing passive voice functions 

• Separate LU-governed prepositional objects from adverbial modifiers (Adv 

vs. NP; probability); differentiate syntactic roles of VP FEs (object vs. Adv) 

• Add more languages (looking for cooperation) 

– Intersection of all languages vs. union of intersections of language pairs 
– ExtraL modules 

• Towards FrameNet-based semantic parsing in GF 

– First, frame labelling 
• As an embedded grammar 
• Restrict LUs to frames by using GF dependent types 

– Later, semantic role labelling (SRL) 



Constructicon 
• A collection of conventionalized (learned) pairings of form and meaning 

(or function), typically based on principles of Construction Grammar, CxG 
(Fillmore et al. 1988, Goldberg 1995) 

– Semantics is associated directly with the surface form 

– LUs in FrameNet: pairings of word and meaning (frame) 
• Including fixed MWUs 

• Each construction (cx) contains at least one variable element 

– Often at least one fixed element as well 

– Somewhere in-between the syntax and the lexicon 

• An example from FrameNet Constructicon: make one’s way (WAY_MEANS) 

– Structure: {Motion verb [Verb] [PossNP]} 

– Evokes: MOTION 

• [ThemeThey] {hacked their way} [Sourceout] [Goalinto the open]. 

• [ThemeWe] {sang our way} [Pathacross Europe]. 



Towards a multilingual constructicon 
• Berkeley/FrameNet Constructicon (BCxn) 

– A pilot project (~70 cx) 

• Swedish Constructicon (SweCcn) 

– An ongoing project (nearly 400 cx so far), inspired by BCxn 

• Brazilian Portuguese Constructicon 

– An ongoing project, inspired by BCxn 

• ... 

• Allows for non-compositional translation in a compositional way 

– e.g. some constructions are covered by L/ConstructionL in RGL 

• Constructions with a referential meaning may be linked via 
FrameNet frames, while those with a more abstract grammatical 
function may be related in terms of their grammatical properties 
 

[Bäckström L., Lyngfelt B., Sköldberg E. (2014) Towards interlingual constructicography] 



http://spraakbanken.gu.se/eng/sweccn 

http://spraakbanken.gu.se/eng/sweccn
http://spraakbanken.gu.se/eng/sweccn


SweCcn 
• Partially schematic multi-word units/expressions 

• Particularly addresses constructions of relevance for second-language 
learning, but also covers argument structure constructions 

• Descriptions are manually derived from corpus examples 

• Construction elements (CE): 

– Internal CEs are a part of the cx 

– External CEs are a part of  
the valency of the cx 

– Described in more detail by  
attribute-value matrices specifying  
their syntactic and semantic features 

• A central part of cx descriptions  
is the free text definitions 

– ‘eat himself full’ vs. ‘feel himself tired’ 
(äta sig mätt vs. känna sig trött) 



SweCcn → GF 
• Task: convert the semi-formal SweCcn into a computational CxG 

• Why GF? 

– There is no formal distinction between lexical and syntactic functions in GF – 
fits the nature of constructicons 

– The potential support for multilinguality 

– Based on RGL / an extension to RGL / an embedded grammar 

– An extension to the FrameNet-based grammar and lexicon 

• Goals: 

– From the linguistic point of view 
• New insights on the interaction between the lexicon and the grammar 
• Allows for testing the linguistic descriptions of constructions 

– From the language technology point of view: 
• Facilitates language processing in both mono- and multilingual settings (e.g. IE, MT) 

– Useful in second-language learning 
• Linguistic or technology point of view? 



Conversion steps 
• Preprocessing: 

– Automatic normalization and consistency checking 

– Automatic rewriting of the original structures in case of optional CEs and 
alternative types of CEs, so that each combination has a separate GF function 

• Does not apply to alternative LUs (either free variants or should be split into 
alternative constructions, or the CE should be made more general) 

– Automatic conversion of SweCcn categories to RGL categories 

• May result in more rewriting 

• Automatic generation of the abstract syntax 

• Automatic generation of the concrete syntax 

– By systematically applying the high-level RGL constructors 

• And limited low-level means 

• Manual verification and completion (ToDo) 

– Requires a good knowledge and linguistic intuition of the language 



Preprocessing examples 
• behöva NP1 till NP2|VP → 

behövaV NP1 tillPrep NP2 | behövaV NP tillPrep VP 

• snacka|prata|tala NPindef → 

snackaV|prataV|talaV aSg_Det CN | 

snackaV|prataV|talaV aPl_Det CN | 

snackaV|prataV|talaV CN 

• V av Pnrefl (NP) → 

V avPrep reflPron NP | V avPrep reflPron 

• N|Adj+städa → 

N + städaV | A + städaV 



Abstract syntax 
• Each construction is represented by one or more functions 

depending on how many alternative structures are produced in the 
preprocessing steps 

• Each function takes one or more arguments that correspond to the 
variable CEs of the respective alternative construction 

• behöva_något_till_något_VP1 : NP -> NP -> VP 
behöva_något_till_något_VP2 : NP -> VP -> VP 

• snacka_NP1: CN -> VP 
snacka_NP2: CN -> VP 
snacka_NP3: CN -> VP 

• verba_av_sig_transitiv1: V -> NP -> VP 
verba_av_sig_transitiv2: V -> VP 

• x_städa1: N -> VP 
x_städa2: A -> VP 



Concrete syntax 

Construction Elements Patterns 

behöva_något_till_något_VP_1 behöva_V  NP_1  till_Prep  NP_2 {V} NP {Prep} NP 

behöva_något_till_något_VP_2 behöva_V  NP_1  till_Prep  VP {V} NP {Prep} VP 

Code template 

1. mkVP (mkVP (mkV2 mkV) NP) (mkAdv mkPrep NP) 

2. The parser failed at token VP 

• Many constructions can be implemented by systematically applying 
the high-level RGL constructors 

– A parsing problem: which constructors in which order? 

A simple GF grammar 

Final code (by automatic post-processing) 

lin behöva_något_till_något_VP_1 np_1 np_2 = mkVP 
  (mkVP (mkV2 (mkV "behöver")) np_1) 
  (SyntaxSwe.mkAdv (mkPrep "till") np_2) ; 



Code-generating grammar 

A simplified fragment of the abstract syntax 

A simplified fragment of the concrete syntax 

parse -cat=VP "{V} {Prep} NP" 
 

mkVP__V2_NP  
  (mkV2__V (partV _mkV___V  
  (toStr__Prep _mkPrep_))) _NP_ 
 

mkVP__V2_NP (mkV2__V_Prep  
  _mkV___V _mkPrep_) _NP_ 
 

mkVP__VP_Adv (mkVP__V _mkV___V)  
  (mkAdv _mkPrep_ _NP_) 



Running example 



Results 
• In the current experiment, we have consider only the 96 VP constructions 

which resulted in 127 functions 

– Dominating in SweCcn; have the most complex internal structure 

• Given the 127 functions, we have automatically generated the 
implementation for 98 functions (77%) achieving a 70–90% accuracy 

– There is clear space for improvement 

• Manual completion postponed because of the active development of 
SweCcn (changes → synchronization) 

• https://github.com/GrammaticalFramework/gf-contrib (SweCcn) 

• A methodology on how to systematically formalise the semi-formal 
representation of SweCcn in GF, showing that a GF construction grammar 
can be, to a large extent, acquired automatically 

• Consequence: feedback to SweCcn developers on how to improve the 
annotation consistency and adequacy of the original construction resource 

https://github.com/GrammaticalFramework/gf-contrib
https://github.com/GrammaticalFramework/gf-contrib
https://github.com/GrammaticalFramework/gf-contrib
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