
APPLICATION GRAMMARS
CHRISTINA UNGER

(MERCURY.AI)

EXAMPLE: NATURAL LANGUAGE INTERFACES

NLI applications are intermediaries between users and data.

They need to speak

● the language of the user
● the language of the data

Their job is to translate between both.

NLI applications are intermediaries between users and data.

They need to speak

● the language of the user
● the language of the data

Their job is to translate between both.

usually easy
(structured and
machine-readable)

NLI applications are intermediaries between users and data.

They need to speak

● the language of the user
● the language of the data

Their job is to translate between both.

much harder
(natural language)

NLI applications are intermediaries between users and data.

They need to speak

● the language of the user
● the language of the data

Their job is to translate between both.

Abstract syntax
describing the domain

Concrete syntax
(English)

Concrete syntax
(Latvian)

Concrete syntax
(SQL/SPARQL/...)

RGL (Eng) RGL (Lav)

The Resource Grammar Library was developed to take care of "low-level" linguistic rules such as
inflection, agreement, and word order.

This enables the authors of application grammars to focus on the semantics when designing the abstract
syntax.

https://www.grammaticalframework.org/lib/doc/translation.html

Application grammars are top-level grammars, the RGL is a library.

THE RGL AS TOP-LEVEL GRAMMAR FOR MACHINE TRANSLATION: TOMORROW

MAIN PROBLEM:

The RGL is low-level syntax-oriented.

● It lacks a level of abstraction, e.g. to facilitate aligning natural language with data.

● Semantic distinctions are assumed to be defined in application grammars. The RGL defines the
combinatorics of elements, but doesn't specify which elements can really go together.

● RGL parsing creates spurious syntactic ambiguities.

HANDS-ON:
BUILDING AN APPLICATION GRAMMAR

STEP 1: SCOPE

STEP 1: SCOPE

I’m hungry!

STEP 1: SCOPE

I want an
Italian pizza!

STEP 1: SCOPE

I have chili
and papayas.
What can I

cook with this?

STEP 1: SCOPE

Fast and healthy
would be good.

STEP 1: SCOPE

Do you have
something
vegetarian
instead?

STEP 1: SCOPE

No way,
I hate garlic!

STEP 1: SCOPE

Any fancy
desserts

for a date?

STEP 1: SCOPE

Does this have
peanuts? She’s
allergic to
peanuts...

STEP 1: SCOPE

Grouping examples

Recipe Search

I’m hungry.
Any burger recipes?
Fast and healthy please.
What can I do with papayas?
I’m still hungry.

Recipe INFO

Does this contain peanuts?
For how many people is this?
What do I need?
How many carbs does it have?
Is this vegetarian?

User Preferences

I hate garlic.
I’m vegetarian.
I’m allergic to peanuts.
I like cheese.
I try to eat low-carb.

Version 1

https://gist.github.com/cunger/1e5d9e404c6979fc45cdf366b52562e1

Writing application grammars is inherently domain-driven: All important choices depend on
the scope and requirements of the application.

Version 1

+ good level of abstraction

- doesn’t generalize across domains
observation: verbalization structures are usually the same across similar domains,
it’s mostly the lexical items that differ

Version 2 (ontological heaven)

abstract Search = {

 cat

 Kind;

 Term Kind;
 Entity Kind;
 Attribute Kind;
 Relation Kind Kind;

 Search;
 SearchFilter;

+ functions for composition

Version 2 (ontological heaven)

abstract SearchForRecipes = Search ** {

 fun

 Ingredient, Recipe : Kind;

 pizza, burger, dessert : Term Recipe;
 tomato, cheese, peanut : Term Ingredient;

 spaghetti_bolognese, pizza_hawaii : Entity Recipe;

 vegetarian, fast, easy, healthy : Attribute Recipe;

 with : Relation Ingredient Recipe;
 without : Relation Ingredient Recipe;
}

Version 2 (ontological heaven)

abstract SearchForCars = Search ** {

 fun

 Car, Equipment : Kind;

 porsche_cayenne : Entity Car;
 convertible, suv : Term Car;

 child_seat, air_conditioning : Term Equipment;

 fast, cheap : Attribute Car;

 with : Relation Equipment Car;
 without : Relation Equipment Car;
}

Version 2 (ontological heaven)

abstract SearchForMusic = Search ** {

 fun

 Song, Album, Artist : Kind;

 freddy_mercury : Entity Artist;
 made_in_heaven : Entity Album;
 bicycle_race : Entity Song;

 relaxed, fast, heavy : Attribute Song;

 song_by : Relation Song Artist;
 album_by : Relation Album Artist;

contains : Relation Song Album;
}

svn checkout svn://molto-project.eu/wp4/YAQL

Yet Another Query Language (YAQL)

Version 2 (ontological heaven)

+ generalizes across domains
+ thus easy to re-use grammar parts
+ tailored towards alignment with data

- strong semantic orientation leads to a cat/lincat mismatch

Version 2 (ontological heaven)

abstract Search = {

 cat

 Kind;

 Term Kind;
 Entity Kind;
 Attribute Kind;
 Relation Kind Kind;

 Search;
 SearchFilter;

Version 2 (ontological heaven)

abstract Search = {

 cat

 Kind;

 Term Kind; -- CN
 Entity Kind; -- NP
 Attribute Kind; -- AP, Adv, RCl
 Relation Kind Kind; -- V2, N2, A2

 Search;
 SearchFilter;

Version 2 (ontological heaven)

abstract Search = {

 cat

 Kind;

 Term Kind; -- CN
 Entity Kind; -- NP
 Attribute Kind; -- { ap : AP, adv : Adv, rcl : RCl }
 Relation Kind Kind; -- { v2 : V2, n2 : N2, a2 : A2 }

 Search;
 SearchFilter;

Version 2 (ontological heaven)

English

Version 2 (ontological heaven)

English German
(or pick your favourite

morphologically rich language)

Version 2 (ontological heaven)

English German
(or pick your favourite

morphologically rich language)

Version 2 (ontological heaven)

abstract Search = {

 cat

 Kind;

 Term Kind; -- CN
 Entity Kind; -- NP
 Attribute Kind; -- { ap : AP, adv : Adv, rcl : RCl }
 Relation Kind Kind; -- { v2 : V2, n2 : N2, a2 : A2 }

 Search;
 SearchFilter;

Version 2 (ontological heaven)

abstract Search = {

 cat

 Attribute_AP Kind; -- AP
 Attribute_Adv Kind; -- Adv
 Attribute_RCl Kind; -- RCl

 Relation_V2 Kind Kind; -- V2
 Relation_N2 Kind Kind; -- N2
 Relation_A2 Kind Kind; -- A2

Version 2 (ontological heaven)

abstract Search = {

 cat

 Attribute_AP Kind; -- AP
 Attribute_Adv Kind; -- Adv
 Attribute_RCl Kind; -- RCl

 Relation_V2 Kind Kind; -- V2
 Relation_N2 Kind Kind; -- N2
 Relation_A2 Kind Kind; -- A2

+ flat, no explosion

- duplication of composition rules
(imagine you have several *_AP
 and *_CN categories and want to
 have AP-CN-modification)

Version 3 (Syntax-Oriented)

abstract Search = {

 cat

 Noun; -- CN
 NounPhrase; -- NP

 AdjectivePhrase; -- AP

 VerbPhrase; -- VP
 Adverb; -- Adv

 Clause; -- Cl

Version 3 (Syntax-Oriented)

abstract Search = {

 cat

 Noun; -- CN
 NounPhrase; -- NP

 AdjectivePhrase; -- AP

 VerbPhrase; -- VP
 Adverb; -- Adv

 Clause; -- Cl

+ perfect correspondence between
cats and lincats

Version 3 (Syntax-Oriented)

abstract Search = {

 cat

 Noun; -- CN
 NounPhrase; -- NP

 AdjectivePhrase; -- AP

 VerbPhrase; -- VP
 Adverb; -- Adv

 Clause; -- Cl

+ perfect correspondence between
cats and lincats

- plain duplication of the API
- and where did the semantics go??

(syntax-orientation is not bad,
 but it's also not enough)

Version 4

abstract RecipeSearch = {

 cat

 IngredientMassNoun;
 IngredientCountNoun;

 NounPhrase;
 NounPhrase_Neg;
 NounPhrase_NPI;
 NounPhrase_PPI;

 ...

abstract RecipeSearch = {

 cat

 IngredientMassNoun;
 IngredientCountNoun;

 NounPhrase;
 NounPhrase_Neg;
 NounPhrase_NPI;
 NounPhrase_PPI;

 ...

> flat

> syntax-oriented

> grammatic and semantic distinctions
 as needed

abstract RecipeSearch = {

 cat

 IngredientMassNoun;
 IngredientCountNoun;

 NounPhrase;
 NounPhrase_Neg;
 NounPhrase_NPI;
 NounPhrase_PPI;

 ...

> flat

> syntax-oriented

> grammatic and semantic distinctions
 as needed

> modular

Core.gf
phrase and clause layer

(re-usable across languages and domains)

Domain.gf
lexical items and constructrions

Dialog.gf

Numbers.gf Dates.gf

Core.gf
phrase and clause layer

(re-usable across languages and domains)

Dialog.gf

Numbers.gf Dates.gf

UserStory1.gf

UserStory2.gf

