

Lexicon building

digital _______rammars

Markus Forsberg

GF summer school in Riga 2017

Today's talk

- Part I: computational morphology
 - What can we learn from inflection tables?

- Part II: Word senses in GF
 - a few slides; if there is time

Part II: Computational morphology

What can we learn from inflection tables?

work done together with Måns Huldén and Malin Ahlberg

Think about this question for a minute: What can we (machine) learn from a set of inflection tables?

Declinatio [+/-]

f. \$	sing.	plur.	\$
nom.	rŏsa	rŏsae	Т
gen.	rŏsae	rŏsārum	Ш
dat.	rŏsae	rŏsīs	Ш
acc.	rŏsam	rŏsās	IV
abl.	rŏsā	rŏsīs	VI
voc.	rŏsa	rŏsae	V

<i>f.</i> \$	sing.	plur.	\$
nom.	mensa	mensae	Т
gen.	mensae	mensārum	П
dat.	mensae	mensīs	Ш
acc.	mensam	mensās	IV
abl.	mensā	mensīs	VI
voc.	mensa	mensae	V

Verbum finitum

Thema				Vox activa			
vī <i>v</i> -	Ter	mpus praese	ns	imperfectum		futurum	
Persona	indicativ.	coniunct.	imperat.	indicativ.	coniunct.	indicativ.	imper
I. sing.	vīvō	vīvam		vīvēbam	vīverem	vīvam	
II. sing.	vīvis	vīvās	vīve!	vīvēbās	vīverēs	vīvēs	vīvitō!
III. sing.	vīvit	vīvat		vīvēbat	vīveret	vīvet	vīvitō!
I. plur.	vīvimus	vīvāmus		vīvēbāmus	vīverēmus	vīvēmus	
II. plur.	vīvitis	vīvātis	vīvite!	vīvēbātis	vīverētis	vīvētis	vīvitōt
III. plur.	vīvunt	vīvant		vīvēbant	vīverent	vīvent	vīvunt
Thema			Vox activa				
vīx-	Tempus (perfectum	plusquam	perfectum	futurum		
Persona	indicativ.	coniunct.	indicativ.	coniunct.	exactum		
I. sing.	vīxī	vīxerim	vīxeram	vīxissem	vīxerō		
II. sing.	vīxistī	vīxeris	vīxerās	vīxissēs	vīxeris		
III. sing.	vīxit	vīxerit	vīxerat	vīxisset	vīxerit		
I. plur.	vīximus	vīxerimus	vīxerāmus	vīxissēmus	vīxerimus		
II. plur.	vīxistis	vīxeritis	vīxerātis	vīxissētis	vīxeritis		
III plur	vīxērunt	vīverint	vīverant	vīviesont	vīverint		

Verbum infinitum

Modus		infinitivus			participium	
Tempus	praesens	perfectum	futurum	praesens	perfectum	futurum
Vox activa	vīvere	vīxisse	vīctūrum, -am, -um esse	vīvēns		vīctūrus, -a, -um
Geru	ndium		Gerundivum		Supin	um
vīvendī		vīvendus, -a,	-um		-	-

Why this interest in inflection tables?

There is a lot of inflection tables out there:

Wiktionary

Wiktionary is a project to create a multilingual free content dictionary in every language. This means each project seeks to use a particular language to define all words in *all* languages. It actually aims to be much more extensive than a typical dictionary, including thesauri, rhymes, translations, audio pronunciations, etymologies, and quotations. The project started in December 2002, and as of June 2016 is available in over 170 languages with over 25,000,000 entries in all. The largest language edition is English, with 4,733,000 entries. Then Malagasy, French, Serbo-Croatian, Spanish, Chinese, Russian and Lithuanian follow. All seven of them have more than 600,000 entries each, while 41 other languages have more than 100,000 entries each. In total, 116 languages have at least 1,000 entries.

Wiktionary works in collaboration with the Wikimedia Commons. Many sound files have been uploaded to Commons to provide Wiktionary and other projects with examples of pronunciation.

Some learning possibilites we will look into

- Derivation of inflection engines
 paradigm induction
- Learn how to inflect unseen words
 => paradigm prediction
- 3. Derivation of **morphological analyzers**

1. Paradigm induction

What does it mean to say that a word is inflected as another word?

• **Statement**: The German word '*Anfang*' is inflected in the same way as the word '*Frack*'.

And here you have the inflection table of Frack:

	Singular	Plural
Nominative	Frack	Fräcke
Genitive	Frackes, Fracks	Fräcke
Dative	Frack, Fracke	Fräcken
Accusative	Frack	Fräcke

So how do we inflect 'Anfang', given this information?

Like this:

	Singular	Plural
Nominative	Anfang	Anfänge
Genitive	Anfanges, Anfangs	Anfänge
Dative	Anfang, Anfange	Anfängen
Accusative	Anfang	Anfänge

Did you guess right? Can you explain why?

If you know German, pretend that you don't.

Some terminology

• **Paradigm function**: a function that given one (typically the baseform) or more word forms, produces the full inflection table.

		Singular	Plural
	Nominative Anfang	Anfang	Anfänge
f(Anfang) =	Genitive	Anfanges, Anfangs	Anfänge
	Dative	Anfang, Anfange	Anfängen
	Accusative	Anfang	Anfänge

- Words inflect in the same way = they share the same paradigm function.
- Inflection engine: a set of paradigm functions.
- **Paradigm induction**: derivation of paradigm functions.

Paradigm Induction

	Sing	gular	ΡΙι	ural		Singular		Plural
Nominative	Frack	ĸ	Frä	cke	Nominative	Anfang		Anfäng e
Genitive	Frack	kes, Fracks	Frä	cke	Genitive	Anfanges, An	nfangs	Anfäng e
Dative	Frack	k, Fracke	Frä	ck en	Dative	Anfang, Anfa	nge	Anfängen
Accusative	Frack	K	Frä	cke	Accusative	Anfang		Anfäng e
				Sinau	lar	Plural		
				Ind	uction			
		Nominat	ive	Singu x1+a+x		Piurai X1+ä+X2+ 0		
f(v ₁ v ₀)) _	Genitive		x 1+a+ x	2+es, X1+a+X2+s	X 1+ä+ X 2+e		
I(~ ,~2,) —	Dative		x 1+a+ x	2, X1 +a+ X2 +e	X 1+ä+ X 2+en		
		Accusat	ive	x 1+a+ x	2	X 1+ä+ X 2+e		

The method

- **LCS** = Longest common subsequence
- **subsequence** = a string that can be obtained from another string by deleting zero or more characters from that string.
- **substrings** in the subsequence becomes **variables**. I.e, What is common in all words are the variable parts.
- The method: LCS + heuristics to resolve LCS ambiguity.

	Singular	Plural	
Nominative	Frack	Fräcke	
Genitive	Frackes, Fracks	Fräcke	LCS: Frck
Dative	Frack, Fracke	Fräcken	
Accusative	Frack	Fräcke	

LCS ambiguity

Competing alignments

comprar, compra, compro

comprar, compra, compro

Competing LCS

segel, seglet, seglen LCS: segl
segel, seglet, seglen LCS: sege

LCS ambiguity resolution through heuristics

• Heuristic 1: minimize the number of variables

comprar, compra, compro

comprar, compra, compro

• Heuristic 2: minimize the number of infix segments

segel, seglet, seglen LCS: segl segel, seglet, seglen LCS: sege

• and some additional heuristics, but above is the major ones.

The paradigm function

• From a function accepting variable instantiation to word form(s)?

 $f(x_1, x_1, ..., x_n) => f(w_{1_1}, w_{1_1}, ..., w_n)$

- We **match** the input word(s) with **any word pattern(s)** in the paradigm function (often just the lemma with the lemma pattern). This gives us the **variable instantiations** we need to compute the forms.
- The matching may be ambiguous, so we need a matching strategy.
 Longest match seems to work best for suffixing languages.

 $match(x_1+a+x_2, "Frack") = \{x_1=Fr, x_1=ck\}$ Regular expression with groups Ambiguity $match(x_1+a+x_2, "Ananas") = \{x_1=An, x_2=nas\},$ $\{x_1=Anan, x_2=s\}$

What have we achieved?

- We can actually keep the **the paradigm functions** hidden in the background.
- Specifying inflection becomes: word X is inflected as some other word Y (with an already known inflection table).
- Might this be more natural way for a noncomputational linguist to define a computational morphology?

The morphology lab (prototype)

Fornsvenska | 1800-tal | Nysvenska |

Morfologilabbet

Built-in paradigm induction and prediction

2. Paradigm prediction

Prediction task

- Given a word form (typically the lemma), predict its paradigm function/inflection table.
- The paradigm induction **gives us set of words for each paradigm function**, sharing that function.
- Idea: predict the appropriate paradigm function for an input lemma by comparing it to the words of the paradigms, and chose the set of words it is most similar to.

The classifier

- We first defined a **hand-crafted classifier** for the task (described in AFH14).
- We then improved on it using a linear SVM (one-vs-the-rest multi-class) with edge-anchored features (i.e., prefixes and suffixes).
- We also tried other substring variants, but with worse results.

Evaluation data

• Evaluation set 1

Inflection tables for three languages from Wiktionary tables (Durrett & DeNero, 2013). Languages: **Finnish** (nouns/ adjectives, verbs), **Spanish** (verbs), **German** (nouns, verbs). *Clean data with no defective or variant forms.*

• Evaluation set 2

Additional inflection tables gathered from various resources for: **Catalan** (nouns, verbs), **English** (verbs), **French** (nouns, verbs), **Galician** (nouns, verbs), **Italian** (nouns, verbs), **Portuguese** (nouns, verbs), **Russian** (nouns), **Maltese** (verbs). *More messy data with defective tables, variants forms (e.g., cactuses - cacti), et cetera.*

Eval 1: paradigm induction

Data	Input: inflection tables	Output: abstract paradigms	
DE-VERBS	1827	140	
DE-NOUNS	2564	70	(dev: 200 tables)
ES-VERBS	3855	97	
FI-VERBS	7049	282	(test: 200 tables)
FI-NOUNS-ADJS	6200	258	

Eval 1: Results comparison with D&DN13

Data	Per table accuracy		Pe	er form ac	Oracle acc. per form (table)		
	SVM	AFH14	D&DN13	SVM	AFH14	D&DN13	
DE-VERBS	91.5	68.0	85.0	98.11	97.04	96.19	99.70 (198/200)
DE-NOUNS	80.5	76.5	79.5	89.88	87.81	88.94	100.00 (200/200)
ES-VERBS	99.0	96.0	95.0	99.92	99.52	99.67	100.00 (200/200)
FI-VERBS	94.0	92.5	87.5	97.14	96.36	96.43	99.00 (195/200)
FI-NOUNS-ADJS	85.5	85.0	83.5	93.68	91.91	93.41	100.00 (200/200)

Eval 2: Table accuracy

Data	#tbl	#par	mfreq	AFH14	SVM	Oracle
DE-N	2,210	66	18.99	76.09	77.68	98.99
DE-V	1,621	125	52.77	65.02	83.59	95.45
ES-V	3,243	90	70.42	92.25	93.48	96.59
FI-N&A	4,000	233	26.52	83.20	82.84	98.12
FI-V	4,000	204	43.04	91.88	91.64	94.76
MT-V	826	200	10.68	18.83	38.64	85.63
CA-N	4,000	49	44.12	94.00	94.92	99.44
CA-V	4,000	164	60.44	90.76	93.40	98.48
EN-V	4,000	161	77.12	89.40	90.00	97.40
FR-N	4,000	57	92.16	91.60	93.96	98.72
FR-V	4,000	95	81.52	93.72	96.48	98.80
GL-N	4,000	24	88.36	90.48	95.08	99.80
GL-V	3,212	101	45.21	58.92	60.87	98.95
IT-N	4,000	39	83.84	92.32	93.76	99.40
IT-V	4,000	115	63.96	89.68	91.56	98.68
PT-N	4,000	68	74.52	88.12	90.88	99.04
PT-V	4,000	92	62.00	76.96	80.20	99.20
RU-N	4,000	260	15.76	64.12	66.36	96.80
			-			

Eval 2: Form accuracy

Data	#forms	mfreq	AFH14	SVM	Oracle
DE-N	8	57.36	89.72	90.25	99.69
DE-V	27	87.35	96.12	95.28	99.20
ES-V	57	93.80	98.72	98.83	99.47
FI-N&A	233	52.15	91.03	91.06	98.95
FI-V	54	70.38	95.27	95.22	96.76
MT-V	16	39.75	54.66	61.15	95.49
CA-N	2	71.30	96.89	97.33	97.93
CA-V	53	86.89	98.18	98.89	99.77
EN-V	6	91.43	95.93	96.16	99.28
FR-N	2	93.24	92.48	94.68	99.08
FR-V	51	91.47	97.09	98.33	99.02
GL-N	2	91.92	92.82	95.38	99.78
GL-V	70	94.89	98.48	98.32	99.67
IT-N	3	89.36	93.38	94.59	97.44
IT-V	51	89.51	97.76	98.21	99.64
PT-N	4	83.35	89.78	91.97	98.60
PT-V	65	92.62	96.81	97.20	99.68
RU-N	12	25.16	88.19	89.35	99.15

Paradigm prediction in GF: smart paradigms

 A smart paradigm in GF is a gateway function that selects the approriate inflection function based on the input form(s). E.g. (from Detréz and Ranta 2012):

```
mkV : Str -> V
mkV s = case s of {
    _ + "ir" -> conj19finir s ;
    _ + ("eler"|"eter") -> conj11jeter s ;
    _ + "er" -> conj06parler s ;
}
```

3. Deriving morphological analyzers

Morphological analyzers

example (swe)

Bö	ijnin	gar av	Aktiv	Passiv	r
	Böi	iningar	av		
		Böjningar av böja		Aktiv	Passiv
		Infinitiv		böja	böjas
1	F	Presens Preteritum		böjer	böjs, böjes
	1			böjde	böjdes
	1	Supinum		böjt	böjts
		Imperativ		böj	-
			Par	ticin	

example run (swe) *uppvärmde* ⇒ uppvärma:verb+aktiv+preteritum [+other analyses]

A similar task to paradigm prediction, but here the input is any word form.

From inflection table to FST

- An inflection table may be interpreted as a set of string relations. In particular: wordform => lemma +wordform's msd.
- We can build a **FST** over these relations.
- Problem: allowing variables to match any substring may overgenerate a lot.
- So we need to **constrain the variables**.

Learning variable constraints

Paradigm aven	ir	Paradigm <i>negar</i>		
Rule: pres par	$t \rightarrow \inf$	Rule: 1p sg pres \rightarrow inf		
$x_1 + i \rightarrow e + x_2$	+ iendo→ir	$x_1 + i \rightarrow 0 + x_2 + o \rightarrow ar$		
av	n	c	eg	
circuny	n	den	eg	
circuity		desasos	eg	
contrav	n	despl	eg	
conv	n	fr	eg	
dev	n	n	eg	
entrev	n	pl	eg	
interv	n	r	eg	
br ev	n	ren	eg	
piev	n	repl	eg	
prov	n	restr	eg	
rev	n	S	eg	
v	n	SOS	eg	
adv	n	an	eg	

Learning variable constraints

- Assume uniform distribution (just a heuristic!)
- Calculate the probability that there is an unseen string in a variable.
- If the probability is low, assume that we seen everything already.
- If the probability is high, do the same thing for prefixes and suffixes (with smaller and smaller strings).

$$p_{\text{unseen}} = (1 - \frac{1}{t+1})^n$$

 $p_{\text{unseen}} < 0.05 \Rightarrow set \, is \, closed$

Constraining the variables of the **avenir** paradigm:

$$x_1 = (\Sigma^* v) \quad x_2 = n$$

Deriving morphological analyzers

Hierarchical analyses

We generate three separate analyzers: **Original**, where variables only matches previously seen instantiations; **Constrained**, where variables are constrained; **Unconstrained**, where all variables are completely unconstrained. These analyzers can be combined into one large transducer by, e.g., an operation commonly called *priority union*:

Original \cup_P **Constrained** \cup_P **Unconstrained**

Ranking

- The analyser has until now been unweighted, i.e., its goal is to give all plausible analyses while curbing the unwanted ones.
- But for practical use, we want the plausible analyses to be ranked, to get at the most plausible analysis.
- We do that by creating a language model for each variable.
- The ranking depends on how well a plausible analysis fits its variables' language models.

Evaluation: D&D-data unweighted (any analysis)

Language		L-recall	L+M-recall	L/W	L+M/W
	nouns	95.30	95.06	2.08	9.52
German	verbs	91.18	92.44	4.16	9.57
	nouns+verbs	92.11	93.04	4.91	14.10
Spanish	verbs	98.06	97.98	1.93	2.20
	nounadj	88.69	88.48	4.10	5.30
Finnish	verbs	94.52	94.47	3.77	4.60
	nounadj+verbs	92.63	92.43	12.56	16.40

L-recall: correct lemma constructed L+M-recall: correct lemma+MSD constructed L/W: candidate lemma/word form L+MSD/W: candidate lemma+msd/word form

Evaluation: D&D-data weighted (top ranked)

Language		Lemma	L+MSD	MSD
German	nouns	77.06	69.44	79.50
	verbs	90.02	89.76	92.78
Spanish	verbs	96.92	96.92	97.43
Finnish	nounadj	70.29	69.68	91.59
	verbs	90.44	90.44	98.02

Some references

- Forsberg, M., Hulden, M. (2016). Learning Transducer Models for Morphological Analysis from Example Inflections. In Proceedings of StatFSM. Association for Computational Linguistics.
- Forsberg, M., Hulden, M. (2016). Deriving Morphological Analyzers from Example Inflections. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC-2016).
- 3. Ahlberg, M., Forsberg, M., Hulden, M. (2015). **Paradigm classification in supervised learning of morphology**. In *Proceedings of NAACL-HLT 2015*.
- Adesam, Y., Ahlberg, M., Andersson, P., Bouma, G., Forsberg, M., Hulden, M. (2014). Computer-aided morphology expansion for Old Swedish. In *Proceedings of LREC 2014*.
- 5. Hulden, M.; Forsberg, M., Ahlberg, M. (2014). Semi-supervised learning of morphological paradigms and lexicons. In *EACL 2014*.

Part II:

Word senses in GF

The lexicon in GF

- No clear (theoretical) distinction between the lexicon and anything else.
- Probably the best distinction: The lexicon is the set of zero-place functions.

fun word: PoS;

These zero-place functions correspond to word senses.

fun word : PoS ; -- a particular sense of the word 'word'.

Making sense out of words

JUST	TO CLEAR THINGS UP:	
A FEW	ANYWHERE FROM 2 TO 5	
A HANDFUL	ANYWHERE FROM 2 TO 5	xkcd com
SEVERAL	ANYWHERE FROM 2 TO 5	
A COUPLE.	2 (BUT SOMETIMES UP TO 5)	

- Just to get it out of the way: word senses are just abstractions — a word has no god-given number of senses.
- As Kilgariff sensibly put it in "I don't believe in word senses" (1997):
 "[...] word senses exist only relative to a task."

How many senses? The two extremes

(1) **A word in an unique context constitutes a word sense**.

(= we all produce (slightly) new word senses continously, since no two words are in exactly in the same context)

(2) **A lemma has exactly one sense**. (= we don't need to care about word senses, just forms)

The middle: splitters vs lumpers

- 1. paper (a material made of cellulose pulp derived mainly from wood or rags or certain grasses)
- 2. composition, paper, report, theme (an essay (especially one written as an assignment); "he got an A on his composition")
- newspaper, paper (a daily or weekly publication on folded sheets; contains news and articles and advertisements; "he read his newspaper at breakfast")
- 4. paper (a scholarly article describing the results of observations or stating hypotheses; "he has written many scientific papers")
- 5. paper (medium for written communication; "the notion of an office running without paper is absurd")
- 6. newspaper, paper, newspaper publisher (a business firm that publishes newspapers; "Murdoch owns many newspapers")
- 7. newspaper, paper (a newspaper as a physical object; "when it began to rain he covered his head with a newspaper"

\Rightarrow

- 1. paper material (1 and 5)
- 2. paper composition, article (2 and 4)
- 3. paper newspaper, publication, publisher (3,6,7)

Homonymy and polysemy

- **homonymy**: same form, unrelated meaning
 - (a baseball) **bat** vs **bat** (a furry flying object)
 - probably realized with different words in other languages (e.g., Swedish: 'basebollträ' vs 'fladdermus')
- **Polysemy**: same form, related meaning
 - **university** (the institution) vs **university** (the building)
 - Often with the same word in other languages as well.

Regular polysemy

- **animal** ~ **food** (I saw a duck; I ate duck yesterday)
- **kind** ~ **portion** (two beer = two servings of beer/two kinds of beer)
- causative ~ inchoative (John broke the window/The window broke)
- **container** ~ **content** (He drank a bottle/He dropped the bottle)
- **object** ~ **person** (The cello is playing great tonight)

. . .

 Iocation ~ government ~ representative (He visited China; China signs the trade agreement; China attended the peace conference)

Examples collected from http://www.cs.upc.edu/~gboleda/pubs/talks/WSD_regularpolysemyIMS.pdf

So, where does this leave us?

- How should we think about word senses in GF?
- Well, if the GF task is to create as good multilingual translations as possible.
- then we should only make a sense distinction if it actually improves the translation quality.
- not because some monolingual dictionary makes a particular sense distinction.

Nothing more. Thanks for listening!