

NEURAL MT AND OTHER LANGUAGE TECHNOLOGIES AT TILDE

Dr. Raivis SKADIŅŠ

Tilde, Director of Research and Development Fifth GF Summer School 2017, Riga, August 18, 2017

In my talk

- About Tilde and what we do
- Grammar Checking
- Neural Machine Translation

Tilde

What we do

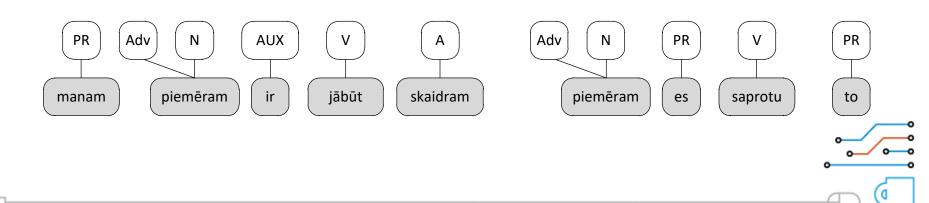
- All kinds of language technologies
 - spelling checkers
 - electronic dictionaries
 - terminology
 - encyclopedias
 - grammar checkers
 - machine translation
 - speech recognition and synthesis
 - virtual assistants and chatbots

What we do

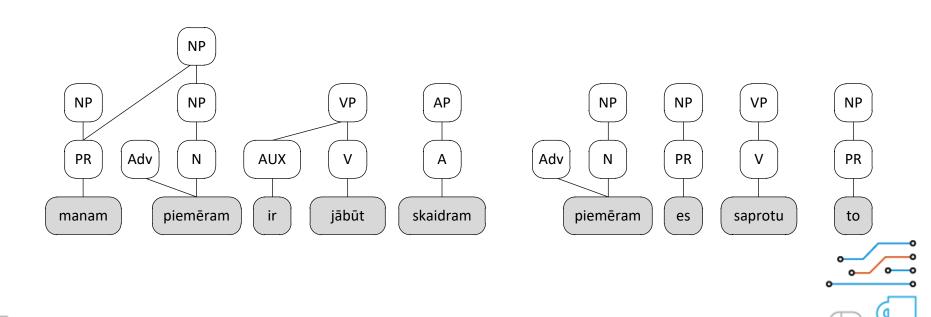
- Wide range of clients
 - home and office users
 - localization companies
 - enterprise clients
 - governments
 - EU infrastructure projects
- Research projects

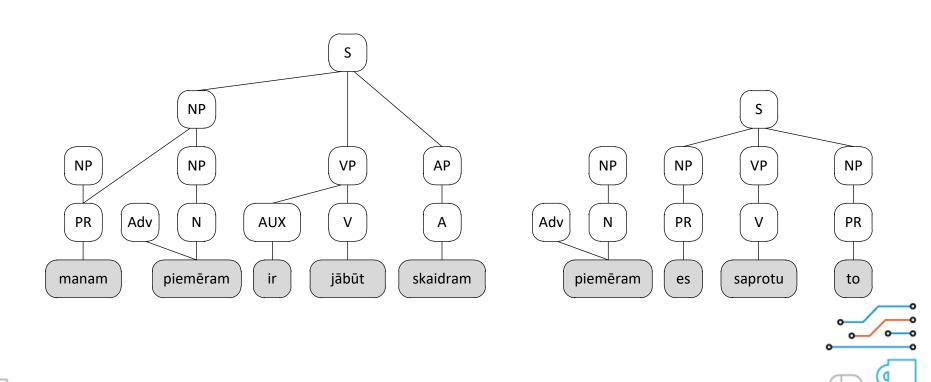
Grammar Checking

How we do it



- If you can parse the sentence, then it is correct
- But, if you cannot parse it
 - It is wrong
 - Your grammar is incomplete


- Is it really so simple?
- Will any parser do?
- How to find the error? How to fix it?



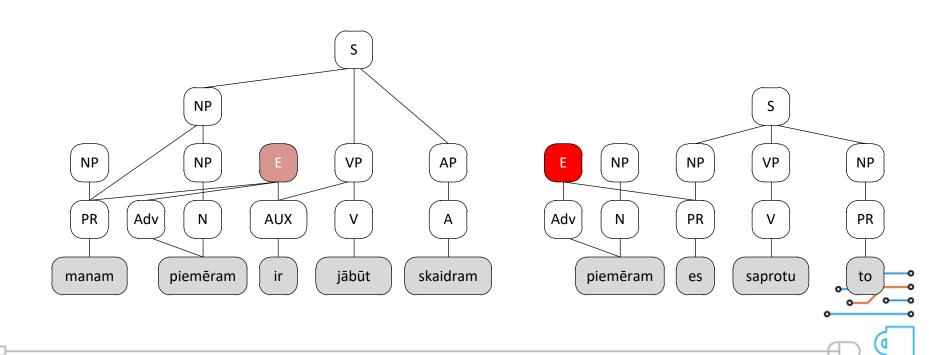
Some examples of rules


```
NP -> attr:AP main:NP
Agree(attr:AP, main:NP, Case, Number, Gender)

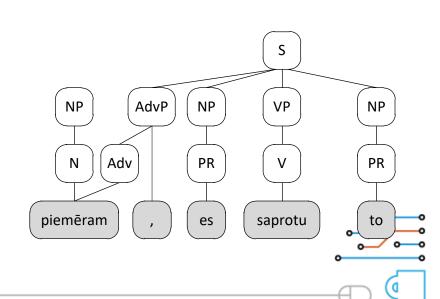
S -> subj:NP main:VP obj:NP
Agree(subj:NP, main:VP, Person)
subj:NP.Case == Nom
obj:NP.Case == Acc
```

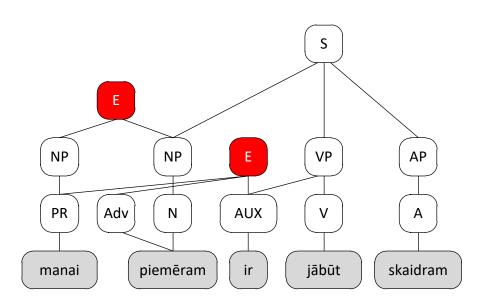
And there are hundreds of them; (Deksne et al., 2014)

How to find the error?



- Two types of rules
 - Regular rules that describe syntax
 - Rules that describe errors
- We parse the sentence with both at the same time
- There is an error, if
 - an error rule has been applied
 - fragment where it has been applied cannot be parsed with regular rules


(Deksne & Skadiņš, 2011)



Error rules


```
ERROR-1 -> attr:AP main:NP
   Disagree(attr:AP,main:NP, Case, Number, Gender)
GRAMMCHECK MarkAll
   attr:AP.Gender=main:NP.Gender
   attr:AP.Number=main:NP.Number
SUGGEST(attr:AP+main:NP)
```


Error rules


```
ERROR-14 -> attr:N attr:G main:N
   attr:N.Case==genitive
   attr:N.Number==singular
   attr:G.AdjEnd==definite
   main:N.Number==plural
   Agree(attr:G, main:N, Case, Number, Gender)
   CapPattern fff
LEX Amerika savienots valsts
```


Rules

Rule type	Latvian	Lithuanian
Correct syntax rules	580	179
Error rules which depend on phrases described	263	72
by correct syntax rules		
Error rules which contain only terminal	239	560
symbols		
Total	1082	811

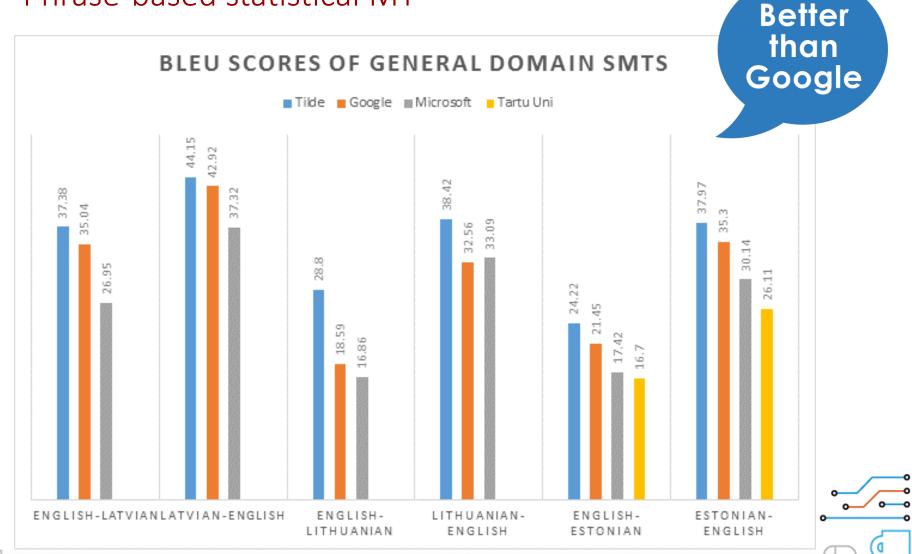
Evaluation

Corpus	Error type	Precision	Recall	F-measure
Lithuanian	all error types	0.898	0.412	0.564
Balanced	vocabulary errors	0.956	0.535	0.686
	incorrect usage of cases	0.734	0.259	0.383
Latvian	all error types	0.780	0.455	0.575
Balanced	punctuation in sub-clauses	0.757	0.643	0.695
	punctuation in participle	0.617	0.671	0.643
	clauses			
Latvian	All error types	0.652	0.231	0.341
Student	punctuation in sub-clauses	0.706	0.586	0.641
papers (dev)	punctuation in participle	0.656	0.560	0.604
	clauses			
Latvian	all error types	0.753	0.203	0.320
Student	punctuation in sub-clauses	0.773	0.588	0.668
papers (test)	punctuation in participle clauses	0.766	0.685	0.723

Machine Translation

Rule-based MT

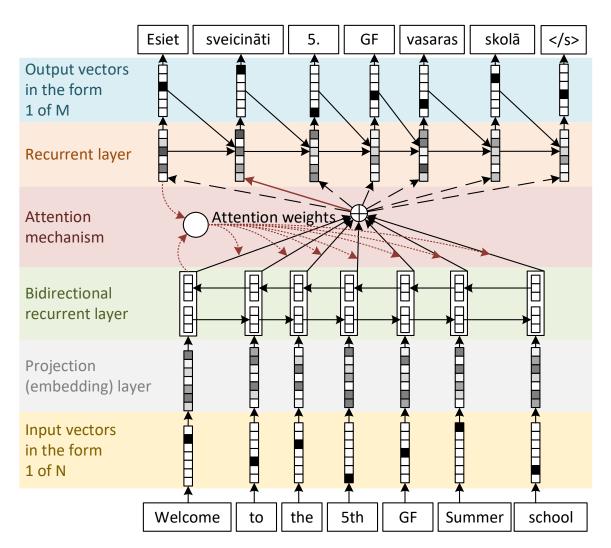
Statistical MT


Neural MT

State-of-the-Art before neural MT?

Phrase-based statistical MT

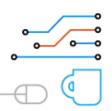
Dawn of the Neural MT



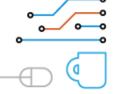
- New technology, 2015, 2016
- Very different architectures
- Many open questions
 - Is it good for Latvian and other under-resourced languages?
 - What is the quality?
 - Strengths and weaknesses?
 - Is it fast enough?
 - What infrastructure do we need?
 - etc.

Technology

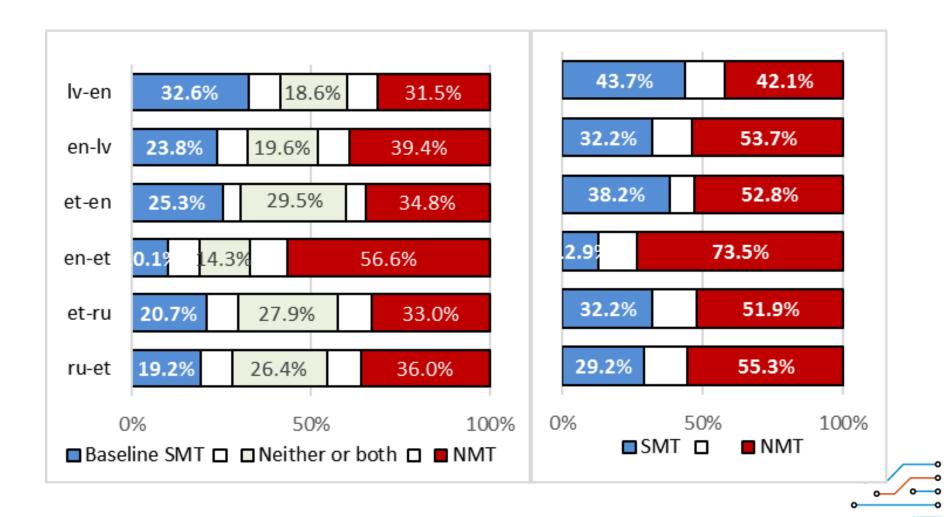
- QT21 project
- Nematus and AmuNMT toolkits
- end-to-end NMT


sub-word tokens (BPE)

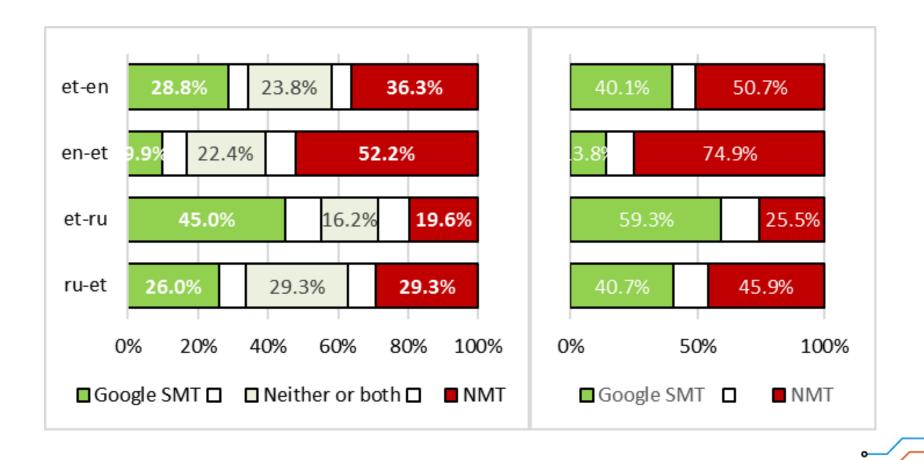
Training data

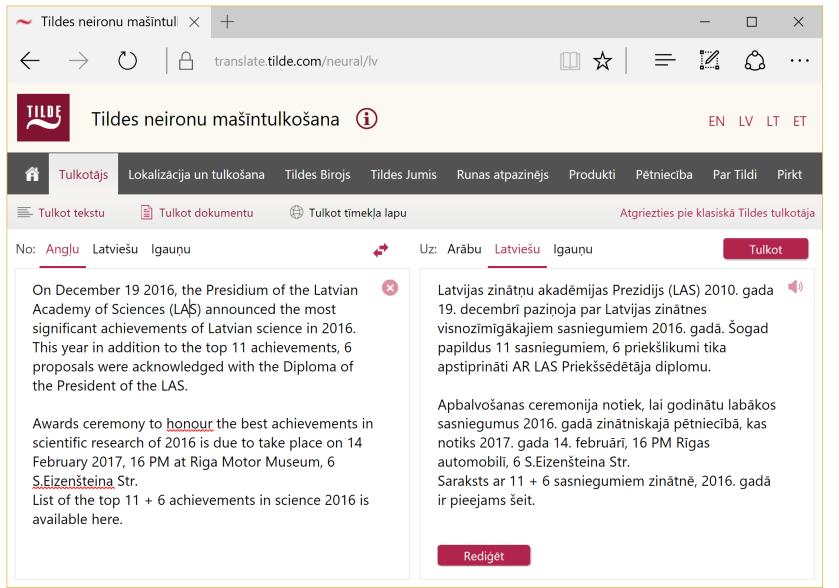

Language	Sentences in	Sentences in
pairs	parallel corpus	monolingual corpus
General domain		
en-et	21 900 622	48 567 363
et-en	21 900 794	217 724 716
ru-et	4 179 198	48 606 392
et-ru	4 179 153	138 001 100
en-lv	7 477 785	74 741 452
lv-en	7 476 956	95 259 699
Pharmaceutical domain		
en-lv	316 443	309 182

Automatic evaluation (BLEU)



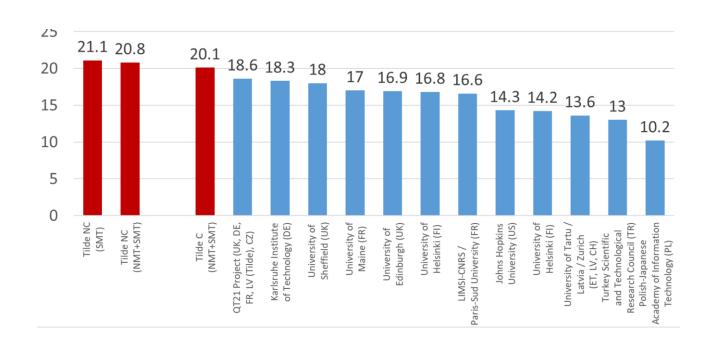
Language pair	System	BLEU
	Baseline SMT	22.53 (20.39-24.95)
en-et	Google Translate (SMT)	19.80 (18.00-21.60)
	NMT	24.64 (22.76-26.54)
	Baseline SMT	32.52 (30.55-34.53)
et-en	Google Translate (SMT)	40.57 (38.48-42.84)
	NMT	31.74 (29.91-33.45)
	Baseline SMT	09.87 (08.73-11.01)
ru-et	Google Translate (SMT)	12.52 (11.03-14.01)
	NMT	09.02 (08.02-10.00)
	Baseline SMT	07.94 (07.07-08.82)
et-ru	Google Translate (SMT)	14.74 (13.18-16.15)
	NMT	09.39 (08.33-10.46)
	Baseline SMT	32.57 (29.96-35.33)
en-lv	translate.tilde.com (SMT)	37.54 (34.65-40.50)
	NMT	24.77 (22.94-26.72)
	Baselone SMT	28.79 (26.84-30.82)
lv-en	translate.tilde.com (SMT)	43.76 (41.25-46.45)
_	NMT	29.62 (27.62-31.44)


Human evaluation (system comparison) SMT vs Neural MT



Human evaluation (system comparison) Google Translate vs Neural MT

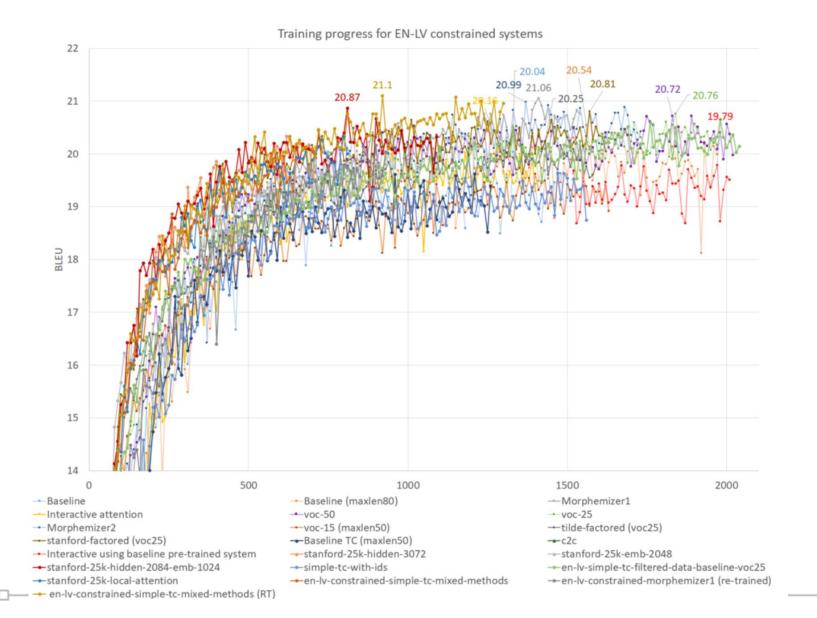
First Conclusions



- In most cases Neural MT outperforms Statistical MT in human evaluation. It is true also for under-resourced languages like Latvian and Estonian
- Fluency is much better, word agreement is better, translates even unseen words
 but can hide semantic errors
- It is not a panacea, it is a field for new research and development

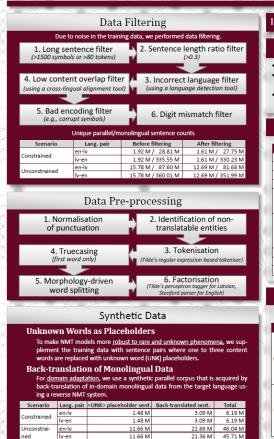
WMT 2017 Competition

- Yearly competition of MT researchers
- Latvian first time this year
- Both human and automatic evaluation


The winning system

- Nematus based NMT system
- Main improvements
 - data preprocessing and cleaning
 - special handling of numbers, ID etc. and rare words
 - hybrid with SMT
 - morphology aware sub-word units
 - factored NMT
 - back-translation of monolingual target language data
 - MLSTM recurrent neural network
 - A lot of experiments with different configurations (~ 55 trained NMT systems)

Tilde's Machine Translation Systems for WMT 2017


Mārcis Pinnis, Rihards Krišlauks, Toms Miks, Daiga Deksne, and Valters Šics

Tilde, Vienības gatve 75A, Riga, Latvia

{marcis.pinnis, rihards.krislauks, daiga.deksne, toms.miks, valters.sics}@tilde.lv

Introduction We present Tilde's WMT 2017 MT systems that were ranked as the best performing systems by automatic evaluation.

Machine Translation Systems

- SMT Systems—Moses phrase-based systems, fast-align word alignment, 7-gram translation models, 5-gram KenLM language models, trained on the Tilde MT platform.
- NMT Systems—Nematus NMT systems with MLSTM recurrent units, morphology-driven word splitting, vocabulary size of 25,000 for constrained systems and 50,000 for unconstrained systems, decoding beam size of 12, ensembles of 5 to 7 models, back-translated data used to train final systems.
- NMT-SMT hybrid systems—rare words (e.g., person names, location names, different scripts, etc.) are replaced with unknown word place-holders, sentences are translated with NMT systems, after which rare words are translated with SMT systems. In unconstrained systems, a named entity data base is used to improve person name translation quality.

Example of the NMT-SMT Hybrid Translation Process

Translation step	Example sentence
Source text	šodien skatieties Ikaunieces-Admidiņas startu Rio spēlēs.
Pre-processed text	šodien skat00 ieties I00 kaun00 iec00 es - Ad00 mi00 di00 ņas start00 u Rio spēlē00 s .
Text with identified rare words	šodien skat00 ieties βIDβ - βIDβ start00 u Rio spēlē00 s .
NMT translation	watch the $\beta ID \beta$ - $\beta ID \beta$ start at the Rio Games today .
Moses XML with untranslated rare words Ammidinas moses XML with untranslated rare words	
Moses XML with identified un- translated person names	<pre><nmt translation="Watch the"> šodien skatieties </nmt> <ne prob="1.0" translation="Ikauniece"> Ikaunieces</ne> <nmt -="" translation=""> -</nmt> <ne 0.95 0.05"="" translation="Admidiana Admidiana Padmidins prob="> Admidiana</ne> <nmt translation="Start at the Rio Games today"> šodien startu Rio spēlēs</nmt> <nmt translation="."> .</nmt> .</pre>
SMT translation	watch the Ikauniece - Admidina start at the Rio Games today .
Post-processed translation	Watch the Ikauniece-Admidina start at the Rio Games today.
NMT only transl. (for comparison)	Today, look at the start of the Isolence-Admidias in the Rio Games.

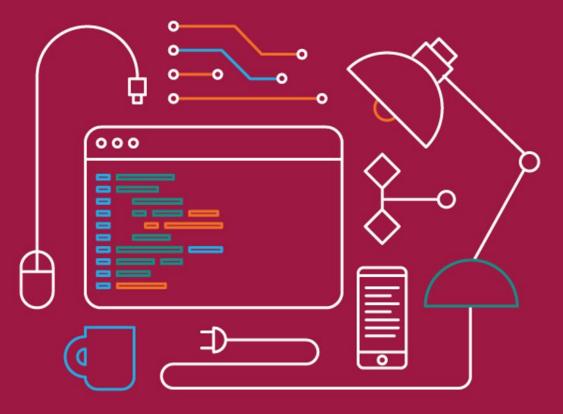
Evaluation

Scenario	Lang. pair	System	BLEU (CS)	BEER 2.0	CharacTER	(U) en-lv 15.9%	32.7%	34.2%	
		SMT	12.98±0.62	0.5086	0.6642	(U) lv-en 13.9%	17.1%	50.9%	
	en-lv	NMT	†19.49±0.79	0.5478	0.5877	(C) en-ly	34.8%	44.8%	
		Hybrid	†19.52±0.82	0.5482	0.5853				
onstrained		SMT	15.47±0.59	0.5219	0.6606	(C) lv-en	31.9%	44.2%	
	lv-en	NMT	†20.01±0.67	0.5494	0.6088	0% ■SMT □	50% Neither or both	□ ■NMT	100%
		Hybrid	†20.06±0.63	0.5496	0.6081	SMI	invention of both	U NMII	
6		SMT	20.43±0.86	0.5491	0.6126	(U) en-lv 26.7%		58.3%	
	en-lv	NMT	20.04±0.78	0.5563	0.5832	(U) Iv-en 18.3%		68.0%	
		Hybrid	20.08±0.78	0.5567	0.5827	(C) en-ly 8.4	80	.6%	
nconstrained		SMT	19.05±0.63	0.5515	0.6233	(C) lv-en 12.7%		5.0%	
	lv-en	NMT	†22.02±0.63	0.5677	0.5838	7			
		Hybrid	†22.06±0.66	0.5683	0.5833			0% 80% NMT	100%

Comparison of the be	st
constrained system submi	ssions

Lang. pair	System	BLEU (CS)	BEER 2.0	CharacTER
	Tilde (hybrid)	†19.52±0.79	0.5482	0.5853
en-lv	QT21 combination	18.03±0.71	0.5403	0.6455
	KIT primary	17.72±0.69	0.5428	0.6051
	Tilde (hybrid)	†20.06±0.65	0.5496	0.6081
lv-en	UEDIN NMT	19.08±0.65	0.5462	0.6308
	JHU SMT	16.95±0.60	0.5281	0.6485

Get the poster in PDF:



The research has been supported by the European Regional Development Fund within the research project "Neural Network Modelling for Inflected Natural Languages" No. 1.1.1.1/16/A/215.

• (Pinnis et al., 2017)

THANK YOU!

QUESTIONS, DISCUSSIONS

References

- Deksne, D., & Skadiņšš, R. (2011). CFG Based Grammar Checker for Latvian.
 In Proceedings of the 18th Nordic Conference of Computational Linguistics
 NODALIDA 2011 (p. 275 278). Riga.
- Deksne, D., Skadiņa, I., & Skadiņš, R. (2014). Extended CFG Formalism for Grammar Checker and Parser Development. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing, 15th International Conference, CICLing 2014, Proceedings, Part I (pp. 237–249). Kathmandu, Nepal: Springer. http://doi.org/10.1007/978-3-642-54906-9
- Pinnis, M., Krišlauks, R., Miks, T., Deksne, D., Šics, V. (2017). Tilde's Machine Translation Systems for WMT 2017.

