
GF for Python programmers
Inari Listenmaa, based on tutorial by Herbert Lange

Stellenbosch, 5th December 2018



daherb.github.io/GF-for-Python-programmers/ 
In the link above, you find a more comprehensive GF⇔Python 

tutorial, with links to Jupyter notebooks and GF source code.

https://daherb.github.io/GF-for-Python-programmers/


 ≈ 
record
table
param

static types

class
dictionary
enum







} Can be any type!









Types



Types













Common pitfalls



Compile-time tokens vs. runtime strings

https://gist.github.com/inariksit/edde72f43d439571c79f8ef758443c11

https://gist.github.com/inariksit/edde72f43d439571c79f8ef758443c11


Compile-time tokens vs. runtime strings



Compile-time tokens vs. runtime strings



Now for the dreaded compile-time string token rule: GF requires that every token -- 

every separate word -- be known at compile-time. Rearranging known tokens in new 

ways, no problem: GF can generate an infinite variety of different combinations of 

words. 

But they have to be words known to GF at compile-time. GF is not improv: as 

Shakespeare might have said, if anybody's going to make up new words around here, 

it'll be the playwright, not the actor. You can + tokens together but only at 

compile-time. If you try to do it at run-time, you will get weird errors, like unsupported 

token gluing or, worse, Internal error in GeneratePMCFG.

This is very different to what Python does: Python quite happily manipulates strings at 

any time, because to Python, strings are just arrays of characters. Space is just another 

character. But to GF, words carry meaning; and run-time is too late to make up new 

words and new meanings.

https://daherb.github.io/GF-for-Python-programmers/Tutorial.html 

https://daherb.github.io/GF-for-Python-programmers/Tutorial.html


Using GF grammars from Python



Live demo using 
grammaticalframework.org/doc/runtime-api.html#python

http://www.grammaticalframework.org/doc/runtime-api.html#python

